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R É S U M É

D E S R É S E AU X AU X G R A P H E S

Au cours des dernières décennies, les réseaux sont devenus omniprésents dans
notre vie quotidienne. Parmi ces réseaux se trouvent des réseaux sociaux, des réseaux
de neurones ou des réseaux informatiques, dont Internet, mais les réseaux apparais-
sent également dans des domaines à première vue éloignés de l’informatique, par
exemple pour ce qui est des réseaux routiers, des réseaux électriques ou des réseaux
métaboliques.

En informatique et en mathématiques, lorsqu’ils sont étudiés d’un point de vue
théorique, les réseaux sont plutôt appelés des graphes, et leur étude la théorie
des graphes. Si les applications mentionnées précédemment sont plutôt récentes,
la théorie des graphes les précède de plusieurs siècles. En effet, c’est en 1736
que, étudiant quel chemin emprunter pour traverser chaque pont de Königsberg
(désormais Kaliningrad), Euler comprît que la topologie précise des lieux n’avait
aucune importance, et seule importait quelles îles reliaient les différents ponts. La
théorie des graphes était née, même si le terme ne fut inventé que 142 ans plus tard
par Sylvester.

En 1852, Guthrie découvrit que la carte des comtés anglais pouvait être colorée
en utilisant uniquement quatre couleurs de telle sorte que deux comtés avec une fron-
tière commune ne reçoivent pas la même couleur. Il se demanda alors si la propriété se
généralisait à toutes les cartes. Rapidement, ette conjecture s’est révélée être équiva-
lente à la conjecture correspondante sur les graphes, la fameuse conjecture des quatre
couleurs, résolue plus d’un siècle plus tard, non sans l’aide d’ordinateurs.
Théorème 1 (Théorème des quatre couleurs (Appel, Haken, 1977, [14]))

Tout graphe planaire peut être coloré avec quatre couleurs de telle sorte que deux
sommets adjacents ne reçoivent pas la même couleur.

Cela conduisit à l’étude du nombre chromatique des graphes, c’est-à-dire le nom-
bre minimum de couleurs nécessaires pour colorier un graphe de telle sorte que deux
sommets adjacents ne reçoivent pas la même couleur. En particulier, une question de
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premier ordre, encore aujourd’hui, est d’étudier comment le nombre chromatique est
lié à la structure d’un graphe donné.

L’un des premiers exemples en la matière est la construction de graphes sans tri-
angle avec un grand nombre chromatique par Tutte (sous le pseudonyme de Blanche
Descartes) dans [38]. Comme un graphe complet à n sommets a un nombre chro-
matique de n, le nombre chromatique d’un graphe est toujours au moins égal à son
clique number. Par sa construction, Tutte montra que le nombre chromatique n’est
pas borné supérieurement par une fonction du clique number. Cependant, il reste in-
téressant d’étudier la structure des graphes dans lesquels les deux notions sont liées,
voire égales.

Un graphe dont le nombre chromatique est égal à son clique number, et dont tous
les sous-graphes induits satisfont cette propriété, est dit parfait. Dans [67], Lovász
prouva que si un graphe est parfait, son complémentaire l’est aussi. Puisque les cycles
impairs sur au moins cinq sommets ne sont pas parfaits, un graphe parfait n’a ni trou
impair ni anti-trou impair. Berge conjectura alors, dans sa célèbre Conjecture Forte
des Graphes Parfaits, que la réciproque est vraie. Cette conjecture fut finalement
prouvée par Chudnovsky, Robertson, Seymour et Thomas (voir [32]).

Un autre cas intéressant est celui des graphes dont le nombre chromatique est borné
par une fonction de leur clique number. De telles classes de graphes sont dites χ-
bornées. Gyárfás et Sumner ont conjecturé que, pour toute forêt F, la classe des
graphes sans copie induite de F est χ-bornée. Cette conjecture est toujours ouverte.

C O L O R AT I O N D E G R A P H E S D I R I G É S

En 1982, Neumann-Lara introduisit dans [73] le pendant dirigé de cette notion de
coloration : colorier un graphe dirigé D, c’est partitionner ses sommets en ensembles
induisant des graphes orientés acycliques et, comme pour les graphes non orientés, le
nombre dichromatique de D, noté −→χ (D), est la taille minimale d’une telle partition.
Remarquons que cette notion est naturelle en ceci que remplacer chaque arête d’un
graphe non orienté G par deux arcs opposés donne un graphe orienté

←→
G vérifiant

−→χ (
←→
G ) = χ(G).

En 2001, cette notion a été réintroduite par Mohar dans [71], qui a prouvé de
nombreux résultats concernant le nombre dichromatique, parmi lesquels le suivant :
étant donné un graphe dirigé D avec une matrice d’adjacence MD, −→χ (D) est majoré
par un plus la valeur absolue maximale d’une valeur propre de MD. Comme le même
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résultat existe pour les graphes non orientés, cela corrobore l’idée selon laquelle cette
définition du nombre dichromatique est la bonne notion pour les graphes dirigés, et
on peut espérer généraliser les résultats sur le nombre chromatique des graphes non
orientés aux graphes dirigés via le nombre dichromatique.

De tels résultats ont été trouvés dans différents domaines de la théorie des graphes,
comme la théorie des graphes extrémaux [18, 55, 61], la théorie algébrique des
graphes [72], les sous-structures forcées par un grand nombre dichromatique [3, 10,
11, 25, 43, 48, 87], le nombre dichromatique avec liste [24, 46], la dicoloration des
graphes orientés sur des surfaces [1, 64, 85], la théorie des flots [53, 60] etc.

En particulier, une version du Théorème 1 a été conjecturée par Neumann-Lara :
Conjecture 1 (Conjecture des deux couleurs)

Tout graphe orienté planaire a nombre dichromatique au plus 2.

Cette conjecture est toujours ouverte.

Cette thèse est consacrée à l’étude du nombre dichromatique des graphes dirigés.
La question centrale à laquelle j’ai cherché à répondre est de savoir comment la struc-
ture d’un graphe dirigé affecte son nombre dichromatique, en s’inspirant du cas non-
dirigé, où des analyses similaires ont conduit à l’étude du nombre chromatique.

P L A N D E L A T H È S E

Dans la première partie de ce manuscrit, nous avons étudié quelques métriques
classiques et leur impact sur le nombre dichromatique, en particulier en cherchant
à borner le nombre dichromatique par une fonction de ces métriques. Une des
métriques clefs que nous avons considérée est le degré maximal. Sur les graphes
non-dirigés, le célèbre théorème de Brooks [29] établit que le nombre chromatique
d’un graphe connexe est au plus égal à son degré maximal plus un, et qu’il n’y
a égalité que pour les graphes complets et les cycles impairs. En cherchant des
résultats similaires dans le cas dirigé, un problème se pose : il existe plusieurs
notions qui peuvent faire office de degré pour les graphes dirigés.

Dans le chapitre 3, nous avons approfondi la relation entre les différentes notions
de degrés et le nombre dichromatique. Nous avons commencé par examiner ∆max, et
bien qu’une caractérisation des cas d’égalité avait déjà été trouvée par Harutyunyan
et Mohar dans [47], nous fournissons plusieurs preuves de ce résultat. Nous nous
intéressont ensuite à ∆min et obtenons un résultat d’impossibilité pour une caractéri-
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sation simple des cas d’égalité pour cette métrique. Ce travail, réalisé en collaboration
avec Pierre Aboulker, a été publié dans [2].

Il y a des raisons de penser que notre approche est, sinon la bonne, au moins na-
turelle : en effet, le théorème de Brooks est central dans le domaine de la coloration
de graphes, et il a donné lieu à de nombreuses généralisations utilisant diverses no-
tions de coloration, voir par exemple [57] pour les hypergraphes, ou des métriques
plus fortes que le degré. Un tel exemple de métrique est l’arête-connectivité locale
maximale, que l’on définit comme le nombre maximum de chemins arêtes-disjoints
entre deux sommets distincts donnés. Il peut être prouvé que le nombre chromatique
d’un graphe est au plus égal à son arête-connectivité locale maximale plus un. Cette
borne est une amélioration par rapport à la borne sur le degré, et il reste à caractériser
les cas extrêmaux. Cela a été fait par Aboulker, Brettell, Havet, Marx et Trotignon
[9] lorsque l’arête-connectivité locale maximale est au plus trois, et par Stiebitz et
Toft [88] pour des arête-connectivités locales maximales plus grandes. Un résul-
tat similaire pour les hypergraphes a été trouvé par Schweser, Stiebitz et Toft [78]
lorsque l’arête-connectivité locale maximale est d’au moins trois. Dans le chapitre 4,
nous prouvons un résultat similaire pour les graphes dirigés lorsque l’arc-connectivité
locale maximale est d’au moins trois, et nous décrivons un algorithme polynomial
pour reconnaître les cas extrêmes. Il s’agit d’un travail conjoint avec mes directeurs
de thèse, Pierre Aboulker et Pierre Charbit, et dont un préprint est accessible sur
arXiv [5].

La deuxième partie de cette thèse examine l’impact de la restriction de la structure
des graphes dirigés en interdisant certains sous-graphes induits orientés. Nous nous
demandons quels ensembles finis de graphes dirigés ont la propriété que les graphes
dirigés ne les contenant pas ont un nombre dichromatique borné. Dans le cas non
orienté, Gyárfás et Sumner ont conjecturé qu’il est nécessaire et suffisant pour de tels
ensembles de contenir un graphe complet et une forêt. Aboulker, Charbit et Naserasr
ont proposé un analogue dirigé de cette conjecture dans [10], qui est plus complexe à
énoncer. Dans le chapitre 5, nous résumons leur travail.

Dans le chapitre 6, nous résolvons un cas de cette conjecture en caractérisant les
héros dans les graphes orientés quasi-transitifs. Ce résultat est obtenu en utilisant
un théorème de décomposition pour les graphes orientés quasi-transitifs. Ce travail
conjoint avec mes directeurs de thèse Pierre Aboulker et Pierre Charbit, fait partie
d’un article soumis, et une prépublication est disponible sur arXiv [4].
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Dans le chapitre 7, nous résolvons un autre cas de cette conjecture, qui équivaut à
caractériser les graphes dirigés tels que les orientations de graphes multipartis com-
plets qui ne les contiennent pas ont un nombre dichromatique borné. Nous obtenons
une caractérisation complète de ces graphes dirigés, en utilisant entre autres une ré-
duction à un problème sur les graphes ordonnés. Ce travail conjoint avec mes di-
recteurs de thèse Pierre Aboulker et Pierre Charbit est le résultat principal d’un article
dont le préprint est disponible sur arXiv [4].

Dans le chapitre 8, nous abordons un autre cas de la conjecture en prouvant que les
graphes orientés out-transitifs ont un nombre dichromatique borné. Nous y parvenons
en utilisant un théorème de décomposition pour les graphes orientés out-transitifs,
puis l’utilisons pour prouver un cas spécial de la conjecture de Caccetta-Häggkvist.
Nous prouvons également un théorème de décomposition similaire pour les graphes
dirigés localement semi-complets, et l’appliquons pour prouver des résultats mineurs
sur cette classe. Ce travail, réalisé en collaboration avec mes directeurs de thèse
Pierre Aboulker et Pierre Charbit, est publié dans la revue European Journal of Com-
binatorics [3].

Dans le chapitre 9, nous prouvons que les graphes orientés sans clique à trois som-
mets et sans chemin dirigé induit sur six sommets ont un nombre dichromatique borné
en nous appuyant sur les ensembles dipolaires, un outil utile pour obtenir des bornes
supérieures sur le nombre dichromatique. Ce travail, réalisé en collaboration avec
Pierre Aboulker, Pierre Charbit et Stéphan Thomassé a été soumis et un préprint est
disponible sur arXiv [6].

Le chapitre 10 est entièrement consacré à la caractérisation des graphes orientés
tels que les orientations des graphes cordaux ne les contenant pas ont un nombre
dichromatique borné. Nous décrivons d’abord deux constructions d’orientations de
graphes cordaux avec un nombre dichromatique non borné, et observons que seuls
quelques rares graphes orientés apparaissent dans les deux constructions. Nous prou-
vons ensuite que les orientations de graphes cordaux ne contenant pas ces graphes
orientés ont un nombre dichromatique borné, obtenant ainsi une caractérisation. Ce
travail, réalisé en collaboration avec Pierre Aboulker et Raphael Steiner, est publié
dans le Journal of Discrete Mathematics de la SIAM [8].

La dernière partie de cette thèse diffère du reste de ce manuscrit en ceci qu’elle
ne concerne pas les graphes orientés. Dans le chapitre 11, nous considérons le prob-
lème consistant à colorer les arêtes d’un multigraphe de sorte que pour tout sommet
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et toute couleur, au plus d arêtes incidentes à ce sommet utilisent cette couleur, avec
d un entier fixé. Si d = 1, cela revient au problème classique de coloration d’arêtes.
Nous prouvons des bornes optimales sur le nombre de couleurs nécessaires, relative-
ment à d et au degré maximum, généralisant ainsi pour toute valeur de d la borne
correspondante trouvée par Shannon [83] quand d = 1. Nous considérons ensuite
ce problème sur les graphes simples, et pour chaque valeur de d et du degré maxi-
mum, soit nous prouvons que le problème est NP-complet, soit nous proposons un
algorithme polynomial. Ce travail, réalisé en collaboration avec Pierre Aboulker et
Chien-Chung Huang, est publié dans le Journal of Electronic Combinatorics [7].
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Titre : Coloration de graphes dirigés

Résumé :
Les réseaux sont devenus omniprésents dans notre vie quotidienne, qu’il s’agisse de

réseaux sociaux, de réseaux de neurones ou de réseaux routiers. Pourtant, les graphes,
leur pendant théorique, sont utilisés depuis des siècles pour modéliser des problèmes
pratiques. Un graphe est un ensemble de sommets reliés par des arêtes. Si on considère
des arêtes orientées, on parlera plutôt de digraphes. L’un des concepts les plus féconds de
la théorie des graphes, appliqué aussi bien à des problèmes d’allocation de registres qu’à
l’attribution de fréquences radio, est la coloration de graphes, qui consiste à attribuer des
couleurs aux sommets de manière à ce que deux sommets adjacents aient des couleurs
distinctes. Le nombre chromatique d’un graphe est alors le nombre minimum de couleurs
nécessaires. Cette thèse s’intéresse au nombre dichromatique, une métrique introduite
en 1982 par Neumann-Lara comme équivalent du nombre chromatique, mais pour les
digraphes. Colorer un digraphe, c’est attribuer une couleur à chacun de ses sommets
de sorte qu’aucun cycle dirigé ne soit monochromatique, et le nombre dichromatique
d’un digraphe est le nombre minimum de couleurs nécessaires. Des résultats récents
suggèrent que cette métrique est la bonne notion de coloration dans le cas dirigé. Le
but de cette thèse est d’étudier comment la structure d’un digraphe affecte son nombre
dichromatique.

Dans la première partie de ce travail, nous examinons comment le nombre dichroma-
tique interagit avec d’autres métriques. Tout d’abord, nous considérons le degré, c’est-
à-dire le nombre maximum de voisins d’un sommet. Dans le cas non dirigé, cela cor-
respond au théorème de Brooks, un théorème célèbre avec de nombreuses variations et
généralisations. Dans le cas des digraphes, il n’existe pas de métrique naturelle corre-
spondant au degré maximal. Nous étudions donc comment différentes notions de de-
gré conduisent soit à des théorèmes de type Brooks, soit à des résultats d’impossibilité.
Nous étudions également l’arc-connectivité maximale, une métrique plus générale, four-
nissons un théorème semblable au théorème de Brooks pour cette métrique ainsi qu’un
algorithme polynomial pour reconnaître les cas extrêmaux.

La deuxième partie de ce manuscrit se concentre sur un analogue dirigé de la conjec-
ture de Gyárfás-Sumner, qui essaie de caractériser les ensembles S de graphes tels que
les graphes ayant un nombre chromatique suffisamment grand contiennent un graphe de
S. Cette conjecture reste largement ouverte. Pour les digraphes, une conjecture corre-
spondante a été proposée par Aboulker, Charbit et Naserasr. Nous prouvons plusieurs
cas de cette conjecture, principalement en démontrant que certaines classes de digraphes
ont un nombre dichromatique borné. Par exemple, nous prouvons que les graphes orien-
tés quasi-transitifs et localement out-transitifs ont un petit nombre dichromatique. Nous
caractérisons également les digraphes qui doivent apparaître dans les orientations des
graphes multipartis complets avec un nombre dichromatique suffisamment grand et, ce
faisant, nous découvrons un contre-exemple à la conjecture initiale d’Aboulker, Charbit
et Naserasr. Nous obtenons des résultats similaires pour les digraphes sans triangle et
sans chemins dirigés sur six sommets, ainsi que pour les orientations des graphes cor-
daux.

Dans la dernière partie de cette thèse, nous abordons le problème de l’arête-coloriage
d-défectueux, qui consiste à colorer les arêtes d’un multigraphe de telle sorte que, pour
tout sommet, aucune couleur n’apparaisse sur plus de d de ses arêtes incidentes. Lorsque
d est égal à un, cela correspond au problème de l’arête-coloration. Shannon a trouvé
une borne stricte sur le nombre de couleurs nécessaires par rapport au degré maximal
lorsque d est égal à un, et nous étendons ce résultat à toute valeur de d. Nous explorons
également ce problème sur des graphes simples et prouvons des résultats qui étendent le
théorème de Vizing à toute valeur de d.

Mots-clefs : digraphe, graphe, dirigé, coloration, dichromatique, réseaux



Title: Colouring digraphs

Abstract:
Networks are ubiquitous in our daily life, whether they are social networks, neural

networks, road networks or computer networks. Yet, graphs, their theoretical pendant,
have been used for centuries to model real-life problems. A graph is a set of vertices
with edges connecting them. In many applications, it is useful to give edges a direction,
thus obtaining a digraph (short for directed graph). One of the most fertile concepts of
graph theory (applied in a wide range of practical problems, from register allocation to
mobile radio frequency assignment) is graph colouring, that consists in assigning colours
to vertices so that adjacent vertices get distinct colours. The chromatic number of a graph
is then the minimum number of colours required. This thesis examines the dichromatic
number, a metric introduced in 1982 by Neumann-Lara as a counterpart to the chromatic
number for digraphs. Colouring a digraph consists in assigning a colour to each of its
vertices so that no directed cycle is monochromatic, and the dichromatic number of a
digraph is the minimum number of colours needed for such a colouring. Recent results
suggest that this metric is the appropriate analogue for the corresponding metric on undi-
rected graphs. The aim of this thesis is to investigate how the structure of a digraph
affects its dichromatic number and to extend various results on undirected colouring to
digraphs.

In the first part of this work, we examine how the dichromatic number interacts with
other metrics. First, we consider the degree, which is the maximum number of neigh-
bours of a vertex. In the undirected case, this corresponds to Brooks’ theorem, a cele-
brated theorem with multiple variations and generalizations. In the directed case, there
is no natural metric corresponding to the maximum degree, so we explore how different
notions of maximum directed degree lead to either Brooks-like theorems or impossibility
results. We also investigate the maximum local-arc connectivity, a metric that encom-
passes several degree-like metrics. We demonstrate that the dichromatic number of a
digraph is upper-bounded by one plus its maximum local-arc connectivity, characterize
extremal digraphs, and provide a polynomial algorithm to recognize them.

The second part of this manuscript focuses on a directed analogue of the Gyárfás-
Sumner conjecture. The Gyárfás-Sumner conjecture tries to characterize sets S of undi-
rected graphs such that graphs with large enough chromatic number must contain a graph
of S. This conjecture is still largely open. On digraphs, a corresponding conjecture was
proposed by Aboulker, Charbit, and Naserasr. We prove several subcases of this con-
jecture, mainly demonstrating that certain classes of digraphs have bounded dichromatic
number. For instance, we prove that quasi-transitive and locally out-transitive oriented
graphs have a small dichromatic number. We also characterize digraphs that must appear
in orientations of complete multipartite graphs with large enough dichromatic number
and, in doing so, discover a counterexample to the initial conjecture of Aboulker, Char-
bit, and Naserasr. We obtain similar results for digraphs with no triangle and no directed
paths on six vertices, as well as for orientations of chordal graphs.

In the last part of this thesis, we address the d-edge-defective-colouring problem,
which involves colouring edges of a multigraph such that, for any vertex, no colour ap-
pears on more than d of its incident edges. When d equals one, this corresponds to the
infamous edge-colouring problem. Shannon established a tight bound on the number of
colours needed relative to the maximum degree when d equals one, and we extend this
result to any value of d. We also explore this problem on simple graphs and prove results
that extend Vizing’s theorem to any value of d.

Keywords: digraph, directed, graph, colouring, coloring, dichromatic, networks
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enne, Garance, Lê Thành Dũng — qui a sauvé ma L3 en m’apprenant les λ-choses
—, Lucas, Marin le troll, Olivier, Rémi, Shendan, Stéphane et Victor) et de manière
générale la communauté algorithmique française (Pierre avec ses problèmes trop durs,
Augustin avec ses problèmes vraiment trop durs, Noé avec ses problèmes beaucoup
trop durs, Christophe que j’aimerais bien rencontrer un jour, Cup avec son clavier de
l’enfer, Clément qui m’a initié aux joies de la comptabilité, et évidemment Mathis,
Gaëtan, et Rédouane, les compères milanais).

Je tiens aussi à exprimer ma reconnaissance envers la clique des médeux : Aaron
et ses goûts cinématographiques sûrs, Antoine et son humour délicat, Corentin, so-
bre parmi les sobres, Emma et ses choix de carrière assurés, Henriette l’hyperactive,
Quentin le séducteur, Manon la taciturne et Amanda la bavarde, Vincent le jeune, Zé-
fyr le désordonné, Xavier qui m’a tiré au labo à bout de bras et enfin, Elyes, avec qui
j’ai passé tant d’après-midi à travailler assidûment. J’ose à peine imaginer comment
j’aurais vécu les moments de doute qui accompagnent inévitablement une thèse —
d’autant plus en période de COVID-19 — sans chacun d’entre vous.

Je souhaite également exprimer ma gratitude envers ma mère, mon père ainsi que
mes trois frère et sœurs.

Je conclurais en remerciant celle qui m’a supporté toutes ces années, qui m’a en-
couragé dans mes succès et réconforté dans mes échecs, avec qui je partage mes goûts
de vieux et une tisane devant Questions pour un champion ou Only Connect.

Camille, j’espère partager ta vie encore longtemps.

Vous êtes tous plus chers à mes yeux que vous ne pouvez l’imaginer, et il y a un
peu de vous tous dans cette thèse. Merci beaucoup.

xiv



P U B L I C AT I O N S

For the coherence of this thesis, not all of my works were included in this manuscript.
All the results obtained during my PhD are listed below.

P U B L I S H E D PA P E R S

— P. Aboulker and G. Aubian. « Four proofs of the directed Brooks’ Theorem. »
In: Discrete Mathematics (2022), p. 113193. ISSN: 0012-365X. DOI: https:
//doi.org/10.1016/j.disc.2022.113193

— P. Aboulker, G. Aubian, and C. Huang. « Vizing’s and Shannon’s Theorems
for Defective Edge Colouring. » In: Electron. J. Comb. 29.4 (2022). DOI:
10.37236/11049

— P. Aboulker, G. Aubian, and R. Steiner. « Heroes in Orientations of Chordal
Graphs. » In: SIAM J. Discret. Math. 36.4 (2022), pp. 2497–2505. DOI: 10.
1137/22m1481427

— P. Aboulker, G. Aubian, and P. Charbit. « Decomposing and colouring some
locally semicomplete digraphs. » In: Eur. J. Comb. 106 (2022), p. 103591. DOI:
10.1016/j.ejc.2022.103591

P R E P R I N T S

— P. Aboulker, G. Aubian, P. Charbit, and S. Thomassé. (P6, triangle)-free di-
graphs have bounded dichromatic number. 2022. DOI: 10.48550/ARXIV.
2212.02272

— P. Aboulker, G. Aubian, and P. Charbit. Heroes in oriented complete multipar-
tite graphs. 2022. arXiv: 2202.13306 [math.CO]

— G. Aubian, F. Havet, F. Hörsch, F. Klingelhoefer, N. Nisse, C. Rambaud, and
Q. Vermande. Problems, proofs, and disproofs on the inversion number. 2022.
DOI: 10.48550/ARXIV.2212.09188

— P. Aboulker, G. Aubian, and P. Charbit. Digraph Colouring and Arc-
Connectivity. 2023. arXiv: 2304.04690 [math.CO]

xv

https://doi.org/https://doi.org/10.1016/j.disc.2022.113193
https://doi.org/https://doi.org/10.1016/j.disc.2022.113193
https://doi.org/10.37236/11049
https://doi.org/10.1137/22m1481427
https://doi.org/10.1137/22m1481427
https://doi.org/10.1016/j.ejc.2022.103591
https://doi.org/10.48550/ARXIV.2212.02272
https://doi.org/10.48550/ARXIV.2212.02272
https://arxiv.org/abs/2202.13306
https://doi.org/10.48550/ARXIV.2212.09188
https://arxiv.org/abs/2304.04690




C O N T E N T S

I P RO L E G O M E N A 21
1 I N T RO D U C T I O N 23

1.1 From networks to graphs . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 Colouring digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 D E F I N I T I O N S A N D N OTAT I O N S 29
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Subgraphs and induced subgraphs . . . . . . . . . . . . . . . 30
2.1.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.3 Basic graph classes . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Directed and oriented graphs . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Subdigraphs and induced subdigraphs . . . . . . . . . . . . . 33
2.2.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 Basic digraph classes . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Dicolouring . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II M A X I M U M D E G R E E A N D L O C A L A R C - C O N N E C T I V I T Y 37
3 A D I R E C T E D A N A L O G U E O F B RO O K S ’ T H E O R E M 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 Definitions and preliminaries . . . . . . . . . . . . . . . . . . 40

3.2 Lovász’ proof: greedy dicolouring . . . . . . . . . . . . . . . . . . . 41
3.3 Acyclic subdigraph and induction . . . . . . . . . . . . . . . . . . . 44
3.4 k-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Partitioned dicolouring . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 No Brooks’ analogue for ∆min . . . . . . . . . . . . . . . . . . . . . 54

4 A B RO O K S ’ T H E O R E M F O R L O C A L A R C - C O N N E C T I V I T Y 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 The undirected case . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Our result: the directed case . . . . . . . . . . . . . . . . . . 59

4.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvii



xviii C O N T E N T S

4.3 First properties of k-extremal digraphs . . . . . . . . . . . . . . . . . 65
4.4 Hajós joins - A First Decomposition Theorem . . . . . . . . . . . . . 70

4.4.1 Properties of Hajós join and bijoins . . . . . . . . . . . . . . 71
4.4.2 Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . 76

4.5 Hajós trees - Structure Theorems . . . . . . . . . . . . . . . . . . . . 79
4.6 Recognition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 The hypergraph case . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8 2-extremal digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

III T O WA R D S A D I R E C T E D A N A L O G U E O F G YÁ R F Á S - S U M N E R

C O N J E C T U R E 101
5 T O WA R D S A D I R E C T E D A N A L O G U E O F G YÁ R F Á S - S U M N E R

C O N J E C T U R E 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 The special case of tournaments . . . . . . . . . . . . . . . . . . . . 104
5.3 The main conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4 Solved cases and perspectives . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Forbidding an oriented forest and a transitive tournament . . . 107
5.4.2 Forbidding an oriented forest of stars and a hero . . . . . . . 108

6 H E RO E S I N Q UA S I - T R A N S I T I V E O R I E N T E D G R A P H S 111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 H E RO E S I N O R I E N T E D C O M P L E T E M U LT I PA RT I T E G R A P H S 115
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Heroes in oriented complete multipartite graphs . . . . . . . . . . . . 116

7.2.1 Strong components . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.2 Growing a hero . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 C⃗3(1, 2, 2) is not a hero in oriented complete multipartite graphs . . . 123
7.4 An oriented complete multipartite graph of large dichromatic number 127

8 D E C O M P O S I N G A N D D I C O L O U R I N G S O M E L O C A L LY S E M I -
C O M P L E T E D I G R A P H S 131
8.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.3 Decomposing locally out-transitive oriented graphs . . . . . . . . . . 135
8.4 Applications of Theorem 8.3.2 . . . . . . . . . . . . . . . . . . . . . 138

8.4.1 Dicolourings . . . . . . . . . . . . . . . . . . . . . . . . . . 138



C O N T E N T S xix

8.4.2 A Special Case of the Caccetta-Häggkvist Conjecture . . . . 141
8.5 Structure of locally semicomplete digraphs . . . . . . . . . . . . . . 143
8.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9 (
−→
P 6 , T R I A N G L E) - F R E E D I G R A P H S H AV E B O U N D E D D I C H RO -

M AT I C N U M B E R 151
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.3 Proof of Theorem 9.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . 154

10 H E RO E S I N O R I E N TAT I O N S O F C H O R DA L G R A P H S 159
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.2.1 A few words on chordal graphs . . . . . . . . . . . . . . . . 160
10.2.2 C⃗3(1, 1, k) and transitive tournaments are heroes in oriented

chordal graphs . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.2.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 162

10.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

IV E D G E - D E F E C T I V E C O L O U R I N G 169
11 V I Z I N G ’ S A N D S H A N N O N ’ S T H E O R E M S F O R D E F E C T I V E E D G E

C O L O U R I N G 171
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
11.3 Generalization of Shannon’s Theorem . . . . . . . . . . . . . . . . . 175
11.4 Simple graphs: Vizing’s Theorem and NP-completeness . . . . . . . 179
11.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

B I B L I O G R A P H Y 187





Part I

P RO L E G O M E NA





1
I N T RO D U C T I O N

1.1 F RO M N E T W O R K S T O G R A P H S

In the last decades, networks have become ubiquitous in our everyday life. Of
course, most of this could only happen, for theoretical aspects of computer science
were studied and developed in the mean times, but also long before. These networks
may be social networks, neural networks or computer networks, such as the Internet,
but networks can also be found in seemingly unrelated domains, with networks such
as road networks, powerline networks or metabolic networks.

In computer science and mathematics, when studied from a theoretical point of
view, networks tend to be called graphs, and their study is called graph theory. While
previously mentioned applications are rather recent, graph theory predates them by
centuries. In 1736, Euler figured out that when studying how to cross every bridge
of Königsberg (now Kaliningrad) exactly once, only mattered which islands were
linked with a bridge. Graph theory was born, even though the term was only coined
142 years later by Sylvester.

In 1852, Guthrie figured out that the map of English counties could be coloured us-
ing only four distinct colours so that no two counties with a common border received
the same colour, and wondered whether it was true of all maps. This conjecture was
quickly found to be equivalent to the corresponding conjecture on graphs, solved
more than a century later with a computer-assisted proof.
Theorem 1.1.1 (Four colours theorem (Appel, Haken, 1977, [14]))

Every planar graph can be coloured with four colours so that no two adjacent
vertices receive the same colour.

This gave rise to the study of the chromatic number of graphs, that is the minimum
number of colours needed to colour a graph so that no two adjacent vertices receive
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24 I N T RO D U C T I O N

the same colour. In particular, an important question is to study how the chromatic
number relates to the structure of a given graph.

One of the first examples is the construction of graphs with large chromatic number
but no triangle by Tutte (writing as Blanche Descartes) in [38]. As a complete graph
on n vertices has chromatic number n, the chromatic number of a graph is always
at least its clique number. With its construction, Tutte showed on the other hand that
the chromatic number of graphs is not upper-bounded by a function of their clique
number. However, it remains interesting to study the structure of graphs in which the
two notions are linked, or even in which they are equal.

A graph whose chromatic number is equal to its clique number, and whose every
induced subgraphs satisfy this property, is said to be perfect. In [67], Lovász proved
that if a graph is perfect, so is its complementary. Since odd cycles on at least five
vertices are not perfect, a perfect graph has no odd hole nor odd antihole. Berge
conjectured in its infamous Strong Perfect Graph Conjecture that the reciprocal holds.
It was finally proven true by Chudnovsky, Robertson, Seymour and Thomas in [32].

Outside of this tight case, an interesting case is that of graphs whose chromatic
number is bounded by a function of their clique number. Such classes of graphs are
said to be χ-bounded. Gyárfás and Sumner independently conjectured that, for any
forest F, the class of graphs with no induced copy of F is χ-bounded. This conjecture
still remains largely open.

1.2 C O L O U R I N G D I G R A P H S

In 1982, Neumann-Lara introduced in [73] a directed analogue of the usual colour-
ing of graphs. In this setting, colouring a directed graph D consists in partitioning its
vertices into sets inducing acyclic directed graphs and, similarly to graphs, the dichro-
matic number of D, denoted−→χ (D), is the minimum size of such a partition. Note that
this notion could be considered natural for replacing each edge of an undirected graph
G by two opposite arcs yields a directed graph

←→
G which satisfies −→χ (

←→
G ) = χ(G).

In 2001, this notion was re-introduced by Mohar in [71]. He then went on to
prove many results regarding dichromatic number among which the following: given
a digraph D with adjacency matrix MD, −→χ (D) is upper-bounded by one plus the
largest modulus of an eigenvalue of MD. As the exact same result exists for undi-
rected graphs, this corroborates that this definition of the dichromatic number may be
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the right notion, and we can hope to generalize results on the chromatic number of
undirected graphs to directed graphs via the dichromatic number.

Such results have then been found in various areas of graph theory such as extremal
graph theory [18, 55, 61], algebraic graph theory [72], substructure forced by large
dichromatic number [3, 10, 11, 25, 43, 48, 87], list dichromatic number [24, 46],
dicolouring digraphs on surfaces [1, 64, 85], flow theory [53, 60], links between
dichromatic number and girth [50, 86].

In particular, an analogue of Theorem 1.1.1 has been conjectured by Neumann-
Lara:
Conjecture 1.2.1 (Two colours conjecture)

Oriented planar graphs have dichromatic number at most 2.

This conjecture is still open.

This thesis is devoted to the study of the dichromatic number of directed graphs.
The central question we aim to answer is how the structure of a directed graph impacts
its dichromatic number. We draw inspiration from the undirected case, where similar
analyses have driven the study of the chromatic number.

1.3 O U T L I N E O F T H I S T H E S I S

In the first part of this manuscript, we study classical metrics and how they af-
fect the dichromatic number. In particular, we aim to upper-bound the dichromatic
number by a function of these metrics. One of the key metrics we consider is the max-
imum degree. On undirected graphs, the infamous Brooks’ theorem [29] states that
the chromatic number of a connected graph is at most one plus its maximum degree
and that equality is only obtained on complete graphs and odd cycles. When looking
for similar results in the directed case, a problem arises: there are multiple notions
corresponding to the degree of directed graphs.

In Chapter 3, we delve into the relationship between different notions of degrees
and the dichromatic number. We begin by examining the maximum maxdegree, and
while a characterization of tight cases was already found by Harutyunyan and Mohar
in [47], we provide multiple proofs for the same result. We then turn our attention
to the maximum mindegree and obtain an impossibility result for a simple character-
ization of tight cases for this metric. This work, done in collaboration with Pierre
Aboulker, was published in [2].
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We argue that our approach is natural since Brooks’ theorem is central to graph
colouring and has given rise to multiple generalizations using different notions of
colouring, such as [57] for hypergraphs, and stronger metrics than the degree metric.
One such metric is the maximum local edge-connectivity, which is defined as the max-
imum number of edge-disjoint paths between two distinct vertices. It can be proven
that the chromatic number of a graph is at most one plus its maximum local edge-
connectivity. This bound is an improvement over the corresponding degree-based
bound, and it remains to characterize the tight cases. This was done by Aboulker, Bret-
tell, Havet, Marx and Trotignon [9] when maximum local edge-connectivity is at most
three, and by Stiebitz and Toft [88] for larger maximum local edge-connectivities. A
similar result for hypergraphs was found by Schweser, Stiebitz and Toft [78] when the
maximum local edge-connectivity is at least three. In Chapter 4, we prove a similar
result for directed graphs when the maximum local edge-connectivity is at least three,
and provide a polynomial algorithm to recognize tight cases. This is a joint work with
my advisors Pierre Aboulker and Pierre Charbit has been submitted, and a preprint is
available on arXiv [5].

The second part of this thesis examines the impact of restricting the structure of
directed graphs by forbidding certain induced subdigraphs. We ask ourselves which
finite sets of directed graphs are such that directed graphs not containing them have
bounded dichromatic number. In the undirected case, Gyárfás and Sumner conjec-
tured that it is necessary and sufficient for such sets to contain a complete graph and a
forest. Aboulker, Charbit and Naserasr have proposed a directed analogue of this con-
jecture in [10], which is more involved in its statement. In Chapter 5, we summarize
their work.

In Chapter 6, we solve one case of this conjecture by characterizing heroes in quasi-
transitive oriented graphs. This result is obtained using a decomposition theorem for
quasi-transitive oriented graphs. This joint work with my advisors Pierre Aboulker
and Pierre Charbit is part of a submitted paper and a preprint is available on arXiv
[4].

In Chapter 7, we solve another case of this Conjecture, which is equivalent to char-
acterizing which directed graphs are such that oriented complete multipartite graphs
not containing them have bounded dichromatic number. We obtain a complete charac-
terization of such directed graphs, using among other things a reduction to a problem
on ordered graphs. This joint work with my advisors Pierre Aboulker and Pierre
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Charbit is the main result of a submitted paper, whose preprint is available on arXiv
[4].

In Chapter 8, we address another case of the conjecture by proving that
out-transitive oriented graphs have bounded dichromatic number. We accomplish
this by using a decomposition theorem for out-transitive oriented graphs and use this
decomposition theorem to prove a special case of Caccetta-Häggkvist Conjecture.
We also prove a similar decomposition theorem for locally semicomplete directed
graphs and apply it to prove minor results on this class. This work, done in
collaboration with my advisors Pierre Aboulker and Pierre Charbit, is published in
the European Journal of Combinatorics [3].

In Chapter 9, we prove that oriented graphs with no clique on three vertices and no
induced directed path on six vertices have a bounded dichromatic number by relying
on dipolar sets, a useful tool for obtaining upper bounds on dichromatic numbers.
This work, done in collaboration with Pierre Aboulker, Pierre Charbit, and Stéphan
Thomassé, has been submitted and a preprint is available on arXiv [6].

In Chapter 10, we characterize which directed graphs are such that orientations of
chordal graphs not containing them have bounded dichromatic number. We first de-
scribe two constructions of oriented chordal graphs with unbounded dichromatic num-
ber, and observe that only a handful of directed graphs appear in both constructions.
We then prove that oriented chordal graphs not containing these directed graphs have
bounded dichromatic number, thus obtaining a characterization. This work, done in
collaboration with Pierre Aboulker and Raphael Steiner, is published in the SIAM
Journal of Discrete Mathematics [8].

The last part of this thesis is different in that it does not concern directed graphs. In
Chapter 11, we consider the problem of colouring edges of a multigraph so that for
any vertex and any colour, at most d edges incident with this vertex share that colour,
with d a fixed integer. If d = 1, this amounts to the classical edge-colouring problem.
We prove tight bounds on the number of colours needed, relative to d and the maxi-
mum degree, thus generalizing to any value of d the corresponding bound of Shannon
[83] when d = 1. We then consider the corresponding problem on simple graphs, and
for each value of d and the maximum degree, we either prove that the problem is NP-
complete or provide a polynomial algorithm. This work, done in collaboration with
Pierre Aboulker and Chien-Chung Huang, is published in the Electronic Journal of
Combinatorics [7].





2
D E F I N I T I O N S A N D N OTAT I O N S

In this chapter, we give some definitions and notations that we will use along the
document. Most of them follow from classical textbooks such as [22], [27] or [39].

2.1 G R A P H S

If V is a set and k a positive integer, we note
(
V
k

)
the set of subsets of exactly k

elements of V . A graph, or unoriented graph, is a pair G = (V, E) of finite sets such
that E is a subset of

(
V
2

)
. If E is instead a multisubset of

(
V
2

)
, G = (V, E) is called a

multigraph.

In the rest of this chapter, we let G be a graph.

Vertices and edges. Elements of V are the vertices of G, elements of E are its
edges. For notational simplicity, we write uv for the unordered pair {u, v}. The
vertex set of a graph G is referred to as V(G), its edge set as E(G). We refer to the
number of vertices of a graph as the order of the graph, and to the number of edges
of a graph as the size of the graph.

Adjacency. Let u and v two distinct vertices of G and X a subset of V(G). If
uv is an edge of G, we say that u is adjacent to v or that u is a neighbour of v. If
uv /∈ E(G), we say that u is non-adjacent to v, or that u is a non-neighbour of v. We
denote by N(v) the neighbourhood of v, that is the set of neighbours of v in G. We
denote by N(X) the set of vertices of V(G) \ X that see at least one vertex in X, and
N[X] = N(X)∪X.

Notations. Let X ⊆ V(G), we denote G\X = (V(G) \X, E(G) \ {uv | u ∈ X, v ∈
N(u)}). If X = {x}, then we rather use G \ x instead of the cumbersome G \ {x}. Let
X ⊆ E(G), we denote G− X = (V(G), E(G) \ X). If X = {x}, then we rather use
G− x instead of the cumbersome G− {x}.

29
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Degree. The degree of v in G, denoted by d(v) is the number of neighbours of v
in G. The maximum degree of a vertex in G is denoted by ∆(G). G is said to be
k-regular if for every vertex v, d(v) = k.

2.1.1 Subgraphs and induced subgraphs

In this subsection, let F be a graph.

Subgraph. We say that G and F are isomorphic if there exists a bijection φ :

V(G) → V(F) such that uv ∈ E(G) ⇔ φ(x)φ(y) ∈ E(F) for all u, v in V(G).
We do not distinguish between isomorphic graphs and write G = F if G and F are
isomorphic. If V(F) ⊆ V(G) and E(F) ⊆ E(G), then F is a subgraph of G. If F is a
subgraph of G and F ̸= G, then F is a proper subgraph of G.

Induced subgraph. If X is a subset of V(G), we denote by G[X] the graph that has
X as vertex set and

(
X
2

)
∩ E(G) as edge set. We say that G[X] is the subgraph of G

induced by X. If there exists X ⊆ V(G) such that G[X] is isomorphic F, we say that F
is an induced subgraph of G. If F is a subgraph (resp. an induced subgraph) of G, we
say that G contains (or admits) F as a subgraph (resp. as an induced subgraph).

Hereditary. In this document, we say that G is F-free if G does not contain F as an
induced subgraph. Let F a class of graphs. We say that G is F-free if for any graph
F ∈ F, G is F-free. We denote by Forbind(F) the set of all F-free graphs, and by
Forbind(F) the set of all F-free graphs. A class of graphs C is hereditary if for any
graph G in C, every induced subgraph H of G belongs to C. It is clear that a class of
graphs defined by forbidding subgraphs or induced subgraphs is hereditary.

2.1.2 Connectivity

Path. P is a path of G if it is a sequence of distinct vertices x1x2 . . . xk, k ⩾ 1, such
that xixi+1 ∈ E(G) for all 1 ⩽ i < k. Edges xixi+1, for 1 ⩽ i < k, are called the
edges of P. The length of a path is the number of its edges. Vertices x1 and xk are the
endvertices of P, and x2 . . . xk−1 is the interior of P. P is referred to as a p1pk-path.

Local (edge-)connectivity. Two paths P1 and P2 that share their endvertices are
said to be internally edge-disjoint if their edges are disjoint. They are said to be
internally disjoint if their interior are disjoint. For two distinct vertices u and v,
the local connectivity between u and v, denoted κ(u, v), is the maximum number
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of mutually internally disjoint paths. The local edge-connectivity between u and v,
denoted λ(u, v), is the maximum number of mutually internally edge-disjoint paths.
The maximum local edge-connectivity of G, denoted λ(G), is the maximum of λ(u, v)
for all pairs of distinct vertices u and v.

k-connected. Let k be an integer. G is k-connected if for every distinct vertices
u, v ∈ V(G), κ(u, v) ⩾ k. If k = 1, G is also said to be connected. If k = 2, G is also
said to be biconnected. A k-connected component of G is a maximal k-connected
subgraph of G. 1-connected components are also called connected components. 2-
connected components are also called blocks.

2.1.3 Basic graph classes

Girth. C is a cycle of G if it is a sequence of vertices p1p2 . . . pkp1, k ⩾ 3, such
that p1 . . . pk is a path of G and p1pk ∈ E(G). Edges pipi+1, for 1 ⩽ i < k, and
edge p1pk are called the edges of C. The length of a cycle of G is the number of its
edges. The girth of G is the maximum length of a cycle of G. If G is a forest, its girth
is +∞. If all induced subgraphs of G have girth 3 or +∞, G is said to be chordal.

Star. A graph with no cycle is a forest. A connected forest is a tree. A star is
a tree with no path of length three. A forest of star is a forest whose all connected
components are stars.

Path and cycle graphs. Let k be an integer. A path graph, denoted Pk, is a graph
isomorphic to ({x1, . . . , xk}, {xi, xi+1 | 1 ⩽ i < k}). If k ⩾ 3, a cycle graph, denoted
Ck, is a graph isomorphic to ({x1, . . . , xk}, {xi, xi+1 | 1 ⩽ i < k}∪ {xk, x1}).

Clique and stable. If E(G) = ∅, G is said to be a stable graph, and denoted Kn

where n is order of G. An independant or a stable of G is a subgraph of G isomorphic
to a stable graph. The independance number of G, denoted α(G), is the maximum
order of a stable of G. G is said to be a complete graph if

(E(G)=V(G)
2

)
. A clique of G

is a subgraph of G isomorphic to a complete graph. The clique number of G, denoted
ω(G), is the maximum order of a clique of G.

Complete k-partite. G is said to be a complete k-partite graph if V(G) can be
partitioned into k non-empty subsets A1, . . . , Ak such that, for i = 1, . . . , k, Ai is a
stable set and, for any {i, j} ⊆ {1, . . . , k}, there are all possible edges between Ai and
Aj.
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Wheel. G is said to be a wheel if there exists a universal vertex v such that
G[V(G) \ {v}] is a cycle graph. If G[V(G) \ {v}] is an odd cycle, G is said to be
an odd wheel.

Chromatic number. Let k be an integer. A k-colouring of G is a partition of V(G)

into k subsets inducing stable graphs. Equivalently, a k-colouring of an undirected
graph is a function φ : V(G) → [1, k] such that uv ∈ E(G) ⇔ φ(u) ̸= φ(v). The
chromatic number of G, denoted χ(G), is the least k such that G admits a k-colouring.
If χ(G) = 2, then G is said to be bipartite.

2.2 D I R E C T E D A N D O R I E N T E D G R A P H S

A directed graph, or digraph, is a pair D = (V,A) of finite sets such that A is a
subset of (V × V) \ {(v, v) | v ∈ V}.

In the rest of this chapter, we let D be a digraph.

Adjacency. The elements of V are the vertices of G, the element of A are its arcs.
For notational simplicity, we write uv or u → v for the ordered pair (u, v). The
vertex set of a digraph D is referred to as V(D), its arc set as A(D). Let D be a
digraph, u and v two distinct vertices of D and X a subset of V(D). If uv ∈ A(D),
we say that u sees v, that v is seen by u, that v is an out-neighbour of u or that u is
an in-neighbour of v. If uv, vu /∈ A(D), we say that u is non-adjacent to v, or that
u is a non-neighbour of v. The sets of out-neighbours and in-neighbours of a vertex
v are denoted as v+ and v−, respectively. N(v) denotes the set of neighbours of v,
which is the union of v+ and v−.

Degree. We use d+(v) and d−(v) to denote the number of out-neighbours and
in-neighbours of a vertex v, respectively. The min-degree of a vertex v, denoted as
dmin(v) is the minimum of d−(v) and d+(v). The max-degree of a vertex v, denoted
as dmax(v) is the maximum of d−(v) and d+(v). The maximum of dmin(v) over
all vertices of D is denoted ∆min(v). The maximum of dmax(v) over all vertices
of D is denoted ∆max(v). A digraph is said to be k-regular if for every vertex v,
d+(v) = d−(v) = k.

Notations. If X ⊆ V(D), we denote D\X = (V(D)\X, {uv ∈ A(D) | u, v /∈ X}).
If X = {x}, then we rather use D \ x instead of the cumbersome D \ {x}. If X ⊆ A(D),
we denote D−X = (V(D), A(D) \X). If X = {x}, then we rather use D− x instead
of the cumbersome D− {x}.
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Oriented graph. The underlying multigraph of D is the multigraph
(V(D), {{u, v} | uv ∈ A(D)}). It is denoted as D̃. If for any arc uv of D,
vu /∈ A(D), D is said to be an oriented graph. Note that D is an oriented graph if
and only if its underlying multigraph is a graph.

2.2.1 Subdigraphs and induced subdigraphs

Let D ′ be a digraph.

Subdigraph. We say that D and D ′ are isomorphic if there exists a bijection
φ : V(D) → V(D ′) such that uv ∈ A(D) ⇔ φ(x)φ(y) ∈ A(D ′) for all u, v
in V(D). We do not distinguish between isomorphic digraphs and write D = D ′

if D and D ′ are isomorphic. If V(D ′) ⊆ V(D) and A(D ′) ⊆ A(D), then D ′ is
a subdigraph of D. If D ′ is a subdigraph of D and D ̸= D ′, then D ′ is a proper
subdigraph of D.

Induced subdigraph. If X is a subset of V(D), we denote by D[X] the graph that
has X as vertex set and X×X∩A(G) as arc set. We say that D[X] is the subdigraph
of D induced by X. If there exists X ⊆ V(D) such that D[X] is isomorphic to D ′, we
say that D ′ is an induced subdigraph of D. If D ′ is a subdigraph (resp. an induced
subdigraph) of G, we say that D contains (or admits) D ′ as a subdigraph (resp. as an
induced subdigraph).

Hereditary. In this document, we say that D is D ′-free if D does not contain D ′

as an induced subdigraph. Let F a class of digraphs. We say that D is F-free if for
any digraph F ∈ F, D is F-free. We denote by Forbind(F) the set of all F-free graphs,
and by Forbind(D

′) the set of all D ′-free graphs. A class of digraphs C is hereditary
if for any digraph D in C, every induced subdigraph H of D belongs to C.

2.2.2 Connectivity

Directed paths. P is directed path, or dipath, of D if it is a sequence of distinct
vertices p1p2 . . . pk, k ⩾ 1, such that pipi+1 ∈ A(D) for all 1 ⩽ i < k. Arcs pipi+1,
for 1 ⩽ i < k, are called the arcs of P. P is referred to as a p1pk-dipath.

Local arc-connectivity. Two dipaths P1 and P2 that share their endvertices are said
to be internally arc-disjoint if their arc sets are disjoint. For two distinct vertices u and
v, the local arc-connectivity from u to v, denoted λ(u, v), is the maximum number
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of mutually internally edge-disjoint paths. The maximum local arc-connectivity of D,
denoted λ(D), is the maximum of λ(u, v) for all pairs of distinct vertices u and v.

(Strong) connectivity. A directed graph is called strongly connected or strong
if there is a directed path between any pair of its vertices. It is said to be (weakly)
connected (resp. biconnected) if its underlying multigraph is connected (resp. bicon-
nected). The blocks of D are the maximal biconnected subdigraphs of D. We denote
as D+D ′ the disjoint union of D and D ′, that is the digraph (V(D)∪V(D ′), A(D)∪
A(D ′)).

2.2.3 Basic digraph classes

Orientations.
←→
G is the digraph isomorphic to (V(G),

⋃
uv∈E(G){uv, vu}). A

graph of the form
←→
G for some graph G is said to be symmetric. D is an orienta-

tion of G if G is isomorphic to the underlying multigraph of D.Let G be a class of
graphs (like complete, multipartite complete, chordal graphs). D is symmetric G if it
is isomorphic to

←→
G for some graph G ∈ G. D is oriented G if it is an orientation of

some graph G ∈ G.

Tournaments. Oriented complete graphs are called tournaments. If for any pair
of vertices u and v, uv ∈ A(D) or vu ∈ A(D), D is said to be semicomplete. Note
that in a semicomplete digraph, there can be both arcs uv and vu, which is forbidden
in a tournament.

Oriented stars. A case that will draw our attention is the case of oriented stars
on k+ 1 vertices in which only one vertex has positive outdegree, which we call out-
stars and denote S+2 . Oriented stars on k+ 1 vertices in which only one vertex has
positive indegree are called in-stars and denoted S−2 .

Digons. C is a directed cycle, or dicycle, of D if it is a sequence of vertices
c1c2 . . . ck, k ⩾ 2, such that c1 . . . ck is a directed path of D and c1ck ∈ A(D).
Arcs cici+1, for 1 ⩽ i < k, and arc c1ck are called the arcs of C. The length of a
dicycle is the number of its arcs. A directed cycle of length 2 is called a digon, and is
denoted [c1, c2].

Transitive tournaments. The directed girth, or digirth, of D is the maximum
length of directed cycle of D. D is acyclic if it has no directed cycle. If D is acyclic,
its digirth is +∞. A set X ⊆ V(D) is acyclic if D[X] is acyclic. The only acyclic
tournament on n vertices is called the transitive tournament, and is denoted TTn.
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When it is clear from context, we will write n instead of TTn, and K1 instead of TT1.
Given a transitive tournament T on n vertices {v1, . . . , vn}, we say that v1, . . . , vn is
the topological ordering of T if, for all 1 ⩽ i < j ⩽ n, we have vivj ∈ A(T).

Dipaths and dicycles. Let k be an integer. A directed path, or dipath, denoted−→
Pk, is an oriented graph isomorphic to ({x1, . . . , xk}, {xi, xi+1 | 1 ⩽ i < k}).
If k ⩾ 3, a directed cycle, or dicycle, denoted

−→
Ck, is a digraph isomorphic to

({x1, . . . , xk}, {xi, xi+1 | 1 ⩽ i < k}∪ {xk, x1}).

2.2.4 Dicolouring

Dichromatic number. A dicolouring of a digraph D is a partition of V(D) into
acyclic subsets. A k-dicolouring is a dicolouring using k acyclic subsets. The dichro-
matic number of D, denoted −→χ (G), is the minimum k such that D admits a k-
dicolouring. It is known that for any undirected graph G, the symmetric digraph←→
G satisfies χ(G) = −→χ (

←→
G ). We will sometimes extend −→χ to subsets of vertices,

using −→χ (X) to mean −→χ (D[X]) where X ⊆ V(D).

k-dicritical. D is k-dicritical if −→χ (D) = k and for any proper subdigraph D ′ of
D, −→χ (D ′) < k. D is k-vertex-dicritical if −→χ (D) = k and for any proper induced
subdigraph D ′ of D, −→χ (D ′) < k.

Heroes. Let D be a class of digraphs, then −→χ (D) = maxD∈D
−→χ (D). Note that it

may not be finite. D is said to be heroic if−→χ (Forbind(D)) is finite. A digraph D is a
hero in D if −→χ (Forbind(D) ∩D) is finite. Heroes in tournaments are simply called
heroes.





Part II

M A X I M U M D E G R E E A N D L O C A L
A R C - C O N N E C T I V I T Y

In which we delve into the relationship between different metrics and the
dichromatic number, exhibit upper bounds on the dichromatic number in

terms of these metrics and characterize tight cases.





3
A D I R E C T E D A NA L O G U E O F B RO O K S ’ T H E O R E M

This chapter is built upon a joint work
with Pierre Aboulker, published in [2].

In this chapter, we extend Brooks’ theorem to digraphs, discuss how different
choices of maximum degree bounds the dichromatic number and how we can char-
acterize tight cases for each of them.

3.1 I N T RO D U C T I O N

It is an easy observation that for every graph G, χ(G) ⩽ ∆(G) + 1. The following
classical result of Brooks characterizes the (very few) graphs for which equality holds.

Theorem 3.1.1 (Brooks’ Theorem, [29])
A graph G satisfies χ(G) = ∆(G)+ 1 if and only if G is an odd cycle or a complete
graph.

Many proofs of Brooks’ Theorem have been found, and the different proofs gen-
eralize and extend in many directions. See [37] for a particularly nice survey on this
subject. But Brooks’ Theorem has also been extended to other notions of colouring,
among which the colouring of digraphs via the notion of dicolouring. The aim of this
chapter is to give four new proofs of the directed version, each of them adapted from
a proof of the undirected version, along with an NP-completeness result.

The following easily holds (see subsection 3.1.1 for a proof): for every digraph
G, −→χ (G) ⩽ ∆min(G) + 1 ⩽ ∆max(G) + 1. Recall that a symmetric cycle (resp.
symmetric complete graph) is a digraph obtained from a cycle (resp. from a complete
graph), by replacing each edge by a digon.

39
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We can then state the directed version of Brooks’ Theorem. It was first proved
by Mohar in [72], but we discovered that the proof is incomplete, see Section 3.2 for
more details. Anyway, in [47], Harutyunyan and Mohar generalised Gallai’s Theorem
(a strengthening of Brooks’ Theorem for list colourings) to digraphs, which gave an
alternative and correct proof.
Theorem 3.1.2 ([47, 72])

Let G be a connected digraph, then −→χ (G) ⩽ ∆max(G) + 1 and equality holds if
and only if one of the following occurs:

(a) G is a directed cycle or,
(b) G is a symmetric cycle of odd length or,
(c) G is a symmetric complete graph on at least 4 vertices.

The next four sections are devoted to four new proofs of the directed Brooks’
Theorem. In the last section, we show that it is NP-complete to decide if
−→χ (G) = ∆min(G) + 1, thus a simple characterization of digraphs satisfying
−→χ (G) = ∆min(G) + 1 is very unlikely.

3.1.1 Definitions and preliminaries

We denote by B1 the set of directed cycles, B2 the set of symmetric odd cycles
and, for k ⩾ 3, Bk = {

←→
K k+1} where

←→
K k+1 is the symmetric complete graph on

k+ 1 vertices. Observe that the directed version of Brooks’ Theorem is equivalent to
the following statement: A digraph G has dichromatic number at most ∆max(G) + 1

and equality occurs if and only if G contains a connected component isomorphic to a
member of B∆max(G). We sometimes call the members of Bk exceptions.

Given a digraph G and an ordering (v1, . . . , vn) of its vertices, to colour greedily
G is to colour v1, . . . , vn in this order by giving to vi the minimum between the
smallest colour not used in N+(V) ∩ {v1, . . . , vi−1} and the smallest colour not used
in N−(V) ∩ {v1, . . . , vi−1}. It is easy to see that any ordering leads to a dicolouring
with at most ∆min(G)+ 1 colours. And since we clearly have ∆min(G) ⩽ ∆max(G),
we have:

−→χ (G) ⩽ ∆min(G) + 1 ⩽ ∆max(G) + 1

The following easy lemma will be used in the four proofs of the directed Brooks’
Theorem. Note that it does not hold if one replaces ∆max(G) by ∆min(G), implicit
examples are given in Section 3.6.
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Lemma 3.1.3. If G is a connected non-regular digraph, then −→χ (G) ⩽ ∆max(G).

Proof : Since G is non-regular, it has a vertex u1 such that dmin(u1) < ∆max(G). Let
u1, . . . , un be a vertex ordering output by a BFS on G̃ starting at u1. By greedily
colouring G with respect to the ordering un, . . . , u1, we get a dicolouring with at most
∆max(G) colours.

If ∆max(G) = 1, then every vertex has at most one in-neighbour and at most one
out-neighbour so G is a directed cycle or a path. Hence, −→χ (G) = 2 if and only if G
is a directed cycle. This proves Theorem 3.1.2 for ∆max(G) = 1. So we only need
to prove the directed Brooks’ Theorem for digraphs with ∆max(G) ⩾ 2, and we have
the base case when we want to proceed by induction on the value of ∆max(G).

3.2 L OVÁ S Z ’ P RO O F : G R E E DY D I C O L O U R I N G

In this section, we adapt the proof of Brooks’ Theorem given by Lovász in [66].
The idea is the following: when we greedily colour the vertices of a connected digraph
G using the reverse order output by a BFS of G̃, each vertex except (possibly) the last
one receives a colour from {1, . . . , ∆max(G)}. Indeed, the fact that G is connected
ensures that each vertex (except possibly the last one) has at most ∆max(G) − 1 in-
neighbours or out-neighbours already coloured. The goal of the proof is then to find
an ordering of the vertices such that the last vertex can also be coloured with colour
from {1, . . . , ∆max(G)}.

The first version of the directed Brooks’ Theorem appeared in [72] and the given
proof is based on Lovász’ idea, but appears to be incomplete. To explain why, let us
dive a little deeper into the proof. The goal is to find a vertex v with two out- (or
two in-) neighbours v1, v2 such that v1 and v2 are not linked by a digon and such that
G \ {v1, v2} is connected. You can then choose an ordering of the vertices that starts
with v1 and v2 and continue with the reverse order output by a BFS of G̃ starting at
v (so the ordering ends with v). A greedy dicolouring gives colour 1 to v1 and v2,
and thus there will be an available colour from {1, . . . , ∆max(G)} to colour v (the last
vertex of the ordering). In [72], a vertex v with two in- or two out-neighbours v1 and
v2 not linked by a digon is found, but the fact that G \ {v1, v2} is connected is not
checked and reveals to be non-trivial to prove. We now give full proof based on this
idea.
Theorem 3.2.1

A connected digraph G has dichromatic number at most ∆max(G)+ 1 and equality
occurs if and only if it is a member of B∆max(G).
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Proof : Let G be a counter-example, that is G is connected, −→χ (G) = ∆max(G) + 1 and
G is not a member of B∆max(G). Set k = ∆max(G) ⩾ 2 and recall that G̃ denotes the
underlying graph of G. By Lemma 3.1.3, G is k-regular.

Claim 3.2.1.1. G̃ is 2-connected

Proof of Claim : Assume for contradiction that G̃ has a cutvertex u and let C1 be a
connected component of G− u, and C2 the union of the other connected components.
Set Gi = G[Ci ∪ {u}] for i = 1, 2. By Lemma 3.1.3, G1 and G2 are k-dicolourable. Up
to permuting colours, we may assume that the k-dicolourings of G1 and G2 agree on u,
which gives a k-dicolouring of G, a contradiction. □

Claim 3.2.1.2. G̃ has no edge-cut of size 2.

Proof of Claim : Assume by contradiction that G has an edge cutset {e1, e2}. Let G1 and
G2 be the two connected components of G− {e1, e2}. Both G1 and G2 are k-colourable
by Lemma 3.1.3. A k-dicolouring of G1 and G2 give a k-dicolouring of G as soon as
the extremities of e1 and e2 use at least two distinct colours. Permuting colours in G1 if
necessary, we get a k-dicolouring of G. □

Claim 3.2.1.3. If {u, v} ⊆ V(G) is a cutset of G̃, then {u, v} is a stable set.

Proof of Claim : Let {u, v} ⊆ V(G) be a cutset of G̃ and assume for contradiction and
without loss of generality, that uv is an arc of G. Let C1 be a connected component of
G̃ \ {u, v} and C2 the union of the other connected components. Set Gi = G[Ci ∪ {u, v}]
for i = 1, 2.

Since G̃ is 2-connected, both u and v have some neighbours in both C1 and C2

and thus G1 and G2 are k-dicolourable by Lemma 3.1.3. If both G1 and G2 admit a
k-dicolouring in which u and v receive distinct (resp. same) colours, then we get a k-
dicolouring of G, a contradiction (because no induced cycle can intersect both C1 and
C2). So we may assume without loss of generality that u and v receive the same colour
(resp. distinct colours) in every k-dicolouring of G1 (resp. in every k-dicolouring of
G2).

If u has an out-neighbour in C2, then d+
G1

(u) ⩽ k− 1. We can k-dicolour G1 − {u},
and extend the k-dicolouring to u with a colour not appearing in the out-neighbourhood
of u, so, in particular, distinct from the colour of v, a contradiction. So u has no out-
neighbour in C2 and similarly, v has no in-neighbour in C2.

Suppose u has in-degree at least 2 in G2. Then d−
G1

(u) ⩽ k− 2 and thus we can k-
dicolour G1 − {u} and extend this dicolouring to G1 by giving to u a colour not used in
its in-neighbour and distinct from v, a contradiction. So u has exactly one in-neighbour
in G2, and similarly, v has exactly one out-neighbour in G2 which gives us an edge
cutset of size 2, a contradiction with (3.2.1.2). □
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Claim 3.2.1.4. Let x be a vertex of G and u and v two out-neighbours of x. Then either
{u, v} induces a digon, or {u, v} is a cutset. The same holds if u and v are in-neighbours
of x.

Proof of Claim : Assume for contradiction that {u, v} does not induce a digon and is
not a cutset of G. Let G ′ = G− {u, v} and G̃ ′ the underlying graph of G ′. Since G̃ ′

is connected, there is a BFS ordering (x = u1, u2, . . . , un−2) of G̃ ′. Set un−1 = u

and un = v. We now greedily dicolour G ′ with respect to the order (un, un−1, . . . , u1).
Since G[{un, un−1}] is not a digon, un and un−1 both receive colour 1. For i = n−

2, . . . 2, ui has at least one neighbour in G[{u1, . . . ui−1}], and thus ui has at most k− 1

in- or out-neighbours in G[un, . . . , ui] and hence we can assign a colour from {1, . . . , k}

to it. Finally, since un and un−1 receive colour 1 and are both in the out-neighbourhood
of u1, the out-neighbourhood of u1 is coloured with at most k− 1 distinct colours and
thus u1 receive colour from {1, . . . , k}, a contradiction. The proof is the same when u

and v are in-neighbours of x. □

Observe that G cannot be a symmetric digraph because of the undirected Brooks’
Theorem. So there exists u, v ∈ V(G) such that uv ∈ A(G) and vu /∈ A(G). By
(3.2.1.3), {u, v} is not a cutset.

Claim 3.2.1.5. For every a ∈ u+ \ {v}, {a, v} is a cutset.

Proof of Claim : Suppose {a, v} is not a cutset. By (3.2.1.4) {a, v} induces a digon and
thus u and v are in-neighbours of a. But {u, v} is not a cutset by (3.2.1.3) and does not
induce a digon, a contradiction to (3.2.1.4). □

Let H = G− v and let a ∈ u+ \ {v}. By (3.2.1.5) a is a cutvertex of H, so H has at
least two blocks (where a block is a maximal 2-connected subgraph of G̃). Since G̃ is
2-connected, v has a neighbour in each leaf block of the block decomposition of H̃.

We now break the proof into two parts with respect to the value of k. Suppose first
that k = 2. If the two out-neighbours (resp. the two in-neighbours) of v belong to
distinct blocks of H̃, then v+ does not induce a digon, nor a cutset of G, a contradiction
to (3.2.1.4). Hence v+ is included in a leaf block of H and u− in another one. Now,
dicolour H with 2 colours (it is possible by Lemma 3.1.3). Let w be a cutvertex of H
separating the leaf blocks containing the neighbours of v. Observe that every cycle con-
taining v must go through w. Hence we can extend the 2-dicolouring of H by giving to v

a colour distinct from the one received by w to get a 2-dicolouring of G, a contradiction.
Assume now that k ⩾ 3. So there exists b ∈ u+ \ {a, v}. By (3.2.1.5), both a and

b are cutvertices of H. Since uv ∈ A(G), u is not a cutvertex of H by (3.2.1.3). Let
U be the block of H containing u (which is unique because u is not a cutvertex of H).
Since u sees both a and b, U is not a leaf block of H. Let U1 and U2 be two distinct
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leaf blocks of H. Since G̃ is 2-connected, v must have neighbours in U1 and U2. Let
u1 ∈ U1 and u2 ∈ U2 be two neighbours of v. So u, u1, u2 are in pairwise distinct
blocks of H which implies that for every {x, y} ⊆ {u, u1, u2}, {x, y} does not induce a
digon and is not a cutset of G̃. Now, since u, u1, u2 are neighbours of v, two of them
are included in the in-neighbourhood or in the out-neighbourhood of v, a contradiction
to (3.2.1.4).

3.3 AC Y C L I C S U B D I G R A P H A N D I N D U C T I O N

The proof of this section is an adaptation of a proof of Rabern [75], see also Section
3 of [37]. Here is a sketch of the proof. Let G be a digraph with ∆max(G) = k. We
do induction on k. We first choose a maximal induced acyclic subdigraph M of G
and prove that G−M must have dichromatic number k− 1 and thus must contain
a connected component T isomorphic to a member of Bk−1 by induction. We then
show that a k-dicolouring of G− T can be extended to G.
Theorem 3.3.1

Let G a digraph such that −→χ (G) = ∆max(G) + 1. Then G contains a connected
component isomorphic to a member of B∆max(G).

Proof : The theorem is true for digraphs G with ∆max(G) = 1. Let k ⩾ 2 and assume
the theorem holds for digraph with maximum maxdegree at most k− 1. By means of
contradiction, assume there exists a digraph G with ∆max(G) = k violating the theorem.
We choose such a G with the minimum number of vertices. By Lemma 3.1.3, G is k-
regular.

We now prove two technical claims.

Claim 3.3.1.1. If k ⩾ 3, G cannot contain
←→
K k+1 less an arc, or less a digon, as an

induced subdigraph.

Proof of Claim : Suppose G contains a subdigraph K isomorphic to
←→
K k+1 less a

digon {uv, vu}. Observe that u and v both have exactly one in-neighbour and one out-
neighbour outside of K, and that all other vertices of K have no neighbour outside of K.
Now, by Lemma 3.1.3, G−K can be k-dicoloured and we can extend this k-dicolouring
to G as follows: at most one colour is forbidden for u and one for v, hence, since k ⩾ 3,
we can give the same colour to u and v, and then assign the k− 1 remaining colours to
V(K) \ {u, v}. We thus get a k-dicolouring of G, a contradiction. The same reasoning
holds when an arc is missing instead of a digon. □
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Claim 3.3.1.2. If k = 2, G cannot contain a symmetric odd cycle less an arc, or less a
digon, as an induced subdigraph.

Proof of Claim :
Let ℓ ⩾ 1. Assume for contradiction that G contains a subdigraph C isomorphic to←→

C 2ℓ+1 less an arc uv. Let us consider a 2-dicolouring of G− C and assume without
loss of generality that the out-neighbour of u not in C is coloured 1. We can colour u
and v with colour 2, and greedily colour C− u− v to obtain a 2-dicolouring of G, a
contradiction.

Suppose now that G contains a subdigraph C isomorphic to
←→
C 2l+1 less a digon

{uv, vu}. Let us name F = (G− (C− {u, v}))/uv. Either F is 2-dicolourable, in which
case there exists a 2-dicolouring of G− {C− {u, v}} in which u and v receive the same
colour and we can extend this dicolouring to C or, as ∆max(F) ⩽ 2 and |V(F)| <

|V(G)|, F is a symmetric odd cycle, which implies G is a symmetric odd cycle as well,
a contradiction. □

Let M be a maximal directed acyclic subdigraph of G. By maximality of M, every
vertex in G−M must have at least one in-neighbour and one out-neighbour in M, so
∆max(G−M) ⩽ k− 1. Moreover, −→χ (G−M) = k, as otherwise we could (k− 1)-
dicolour G−M and use a kth colour for M. So G−M has a connected component T
isomorphic to a member of Bk−1 by induction.

Suppose first that there exists u ∈ V(T) whose in-neighbour x and out-neighbour
y in G− T are distinct. Let H = G− T to which is added the arc xy if xy /∈ A(G).
Observe that ∆max(H) ⩽ k. Then H does not contain any element of Bk (as G does
not contain an element of Bk less an arc) which, by minimality of G, implies that H
is k-dicolourable. Thus there is a k-dicolouring of G− T with no monochromatic path
from y to x.

We are now going to show that such a dicolouring can be extended to T . We break
the proof into two parts with respect to the value of k.

Assume first that k ⩾ 3. Then T induces
←→
K k. Observe that each vertex of T has pre-

cisely one in-neighbour and one out-neighbour outside of T . So we can greedily extend
the k-dicolouring of G− T to G−u. We can now greedily extend this dicolouring to u.
This is possible because there is no monochromatic path from y to x in G− T .

Assume now that k = 2. Then T induces a directed cycle. If ∪v∈TN(v) \ V(T) is
monochromatic of colour c, we can assign colour c to u and the other colour to vertices
of T − {u} to obtain a proper 2-dicolouring of G. If not, there must exist a vertex z in T

such that, naming z ′ its out-neighbour in T , z ′+∪ z ′−∪ z+ \V(T) is not monochromatic.
Let c be the colour of the out-neighbour of z not in T . We can then safely assign colour
c to z ′ and then greedily extend the dicolouring to T \ {z}. Now, since the two out-
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neighbours of z are coloured c, we can safely assign the other colour to z to obtain a
proper 2-dicolouring of G.

We can now assume that each vertex u of T is linked to G− T via a digon. If there
is a vertex x in G− T linked to all vertices of T , then T has at most k vertices and thus
must be isomorphic to

←→
K k. Hence T ∪ {x} induces

←→
K k+1, a contradiction.

So, there exist two distinct vertices x, y in G− T linked via a digon to two (distinct)
vertices of T . Let H = G− T to which is added arcs xy and yx (if not existing). Then
H does not contain any element of Bk (as G does not contain an element of Bk less a
digon or an arc) and thus, by minimality of G, H is k-dicolourable. Thus, G− T admits
a k-dicolouring in which x and y receive distinct colours. We can easily extend this
k-dicolouring to a k-dicolouring of G since each vertex of T has a set of k− 1 available
colours and some pair of vertices in T (the neighbours of x and y) get distinct sets.

3.4 k - T R E E S

The proof presented in this section is an adaptation of a proof of Tverberg [89], see
also section 4 of [37].

A digraph G is a direct composition of digraphs G1 and G2 on vertices v1 ∈ V(G1)

and v2 ∈ V(G2) if it can be obtained from the disjoint union of G1 and G2 by adding
exactly one arc between v1 and v2 (either v1v2 or v2v1). A digraph G is a cyclic
composition of digraphs G1, . . . , Gℓ (ℓ ⩾ 2) on vertices v1 ∈ V(G1), . . . , vℓ ∈ V(Gℓ)

if it can be obtained from the disjoint union of the Gi by adding the arcs vivi+1 for
i = 1, . . . , ℓ− 1 and vℓv1

A digraph G is a k-tree if ∆max(G) ⩽ k and it can be constructed as follows:
— the digraphs in Bk−1 are k-trees;
— a direct or cyclic composition of k-trees is a k-tree;
Let G be a digraph. A direct k-leaf of G is an induced subdigraph T of G such

that T belongs to Bk−1 and G is a direct composition of T and G− T . If G cannot
be obtained from a cyclic composition of members of Bk−1, an induced subdigraph
T of G is a cyclic k-leaf of G if T can be obtained from ℓ ⩾ 1 disjoint T1, . . . , Tℓ
belonging to Bk−1 by adding ℓ− 1 arcs vivi+1 for i = 1, . . . , ℓ− 1 where vi ∈ V(Ti),
and G is a cyclic composition of G− T and T1, . . . , Tℓ. See Figure 1.

A k-leaf of G is either a direct k-leaf or a cyclic k-leaf of G, or G itself if G is
a member of Bk−1 or G is obtained from a cyclic composition of members of Bk−1.
Observe that two distinct k-leaves of a digraph G are always vertex disjoint and that



3.4 k - T R E E S 47

a k-tree has at least two k-leaves except if it is a member of Bk−1 or if it can be
obtained by a cyclic composition of members of Bk−1.

A k-path is a digraph obtained by taking the disjoint union of l ⩾ 2 members
T1, . . . , Tℓ of Bk−1 and adding arcs vivi+1 for i = 1, . . . , ℓ− 1 where vi ∈ V(Ti).

A cyclic leaf

A direct leaf

Figure 1 – A 4-tree

The following easy observation will be useful during the proof.
Observation 3.4.1

Let G be a k-tree. Then all vertices of G have mindegree at least k− 1. Moreover,
G has at least k+ 1 vertices of mindegree k− 1, except if G =

←→
K k or if it is a

symmetric path of odd length (and thus k = 2).

The main ingredient of the proof is the following lemma:

Lemma 3.4.2. Let G be a connected digraph and k = ∆max(G) ⩾ 2. Then either G
is a member of Bk, or G is a k-tree, or there exists v ∈ V(G) such that dmax(v) = k

and no connected component of G− {v} is a k-tree.

Proof : Let G be a digraph with ∆max(G) = k and assume that G is not a member of Bk

nor a k-tree.

Claim 3.4.2.1. G has no k-leaf.
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Proof of Claim : Assume first that G has a direct k-leaf T , and let v be the unique vertex
of T having a neighbour outside of T . Recall that T belongs to Bk−1 by definition of a
direct k-leaf. Then dmax(v) = k and G− {v} has two connected components, T − {v}

and G− T . G− T is not a k-tree otherwise G is too, and T − {v} is clearly not a k-tree,
so we are done.

Assume now that G has a cyclic k-leaf T made of ℓ members T1, . . . , Tℓ of Bk−1 and
let v1, . . . , vℓ be as in the definition of cyclic k-leaf. Then dmax(v1) = k and G− {v1}

has two connected components, T1 − {v1} and G− T1. As in the previous case, none of
them is a k-tree. □

We say that a vertex v of G is special if it is contained in an induced subdigraph of G
isomorphic to a member of Bk−1 and dmax(v) = k. For each special vertex x, choose
arbitrarily an induced subdigraph of G isomorphic to a member of Bk−1 that we name
Tx. Moreover, we name Hx the connected component of G− x containing Tx − x. Note
that in the case where G− x is connected, we have Hx = G− x.

If no induced subdigraph of G is isomorphic to a member of Bk−1, then any vertex
v with maxdegree k is such that no component of G− {v} is a k-tree. Moreover, if G
has an induced subdigraph H isomorphic to a member of Bk−1, then at least one of its
vertices must have a maxdegree equal to k, otherwise G = H is a k-tree, a contradiction.
Hence, G must contain some special vertices, and every subdigraph of G isomorphic to
a member of Bk−1 contains a special vertex.

Assume there exists a special vertex v such that Hv is not a k-tree. If G− v is con-
nected, then v is such that dmax(v) = k and no component of G− {v} is a k-tree. So we
can assume G− v is not connected.

Assume first v has only one neighbour a in G−Hv. Let Ga be the connected com-
ponent of G− v containing a. We may assume Ga is a k-tree, otherwise v is such that
dmax(v) = k and no component of G− {v} is a k-tree. If Ga is isomorphic to a mem-
ber of Bk−1, then Ga is a k-leaf of G (direct of cyclic depending if a and v are linked
by a single arc of a digon), if Ga is a cyclic composition of members of Bk−1, then G

contains a cyclic k-leaf, and otherwise Ga has at least two k-leaves, one of the two does
not contain a and is thus a k-leaf of G. Each case contradicts (3.4.2.1).

So v has at least two neighbours a and b in G−Hv, and a ̸= b. If a and b are in
two distinct connected component Ga and Gb of G− v, then one of Ga or Gb must be
a k-tree, for otherwise v is such that dmax(v) = k and no component of G− {v} is a
k-tree, and we find a k-leaf as in the previous case.

So we may assume that G−Hv is connected. Moreover, G−Hv must be a k-tree,
for otherwise v is such that dmax(v) = k and no component of G− {v} is a k-tree. If
G − Hv has a k-leaf disjoint from {a, b}, then it is a k-leaf of G, a contradiction to
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(3.4.2.1). So G−Hv is isomorphic to a member of Bk−1 or is a cyclic composition of
members of Bk−1 or has exactly two leaves, Ta and Tb containing respectively a and b.

If G−Hv is a member of Bk−1, then G− a is connected and is not a k-tree, so a is
such that dmax(a) = k and no component of G− {a} is a k-tree If G−Hv is a cyclic
composition of members of Bk−1, then a cannot be a cutvertex of G−Hv (otherwise
dmax(a) > k), and thus G− a is connected and is not a k-tree, so again a is such that
dmax(a) = k and no component of G− {a} is a k-tree.

So Hv has exactly two leaves Ta, Tb as explained above. Observe that the only vertex
of Ta with maxdegree k in G is a, for otherwise G − a is connected and is not a k-
tree, so a satisfies the theorem. The same holds for Tb and b. Let T be an induced
subdigraph of G−Hv isomorphic to a member of Bk−1 that does not contain a nor b.
If T has at least 3 vertices of maxdegree k, then G−Hv contains a k-leaf disjoint from
{a, b}, a contradiction to (3.4.2.1). If T has exactly two vertices of maxdegree k, then
deleting one leads to a connected digraph which is not a k-tree and we are done. So we
may assume that each subdigraph of G−Hv isomorphic to a member of Bk−1 contains
exactly one vertex of maxdegree k. It implies that G−Hv is a k-path and that G is a
cyclic composition of members of Bk−1 and thus a k-tree, a contradiction.

We may now assume that for every special vertex v, Hv is a k-tree. Let x be a special
vertex and assume without loss of generality that d−(x) = k. Let S be the set of vertices
in Tx with in-degree k. If Tx − S is non-empty, there must exists an arc st where s ∈ S

and t ∈ Tx − S (because Tx is strongly connected). Since Hs is a k-tree, t must have
in-degree at least k− 1 in G− s, and thus has in-degree k in G, a contradiction. So every
vertex of Tx has in-degree k. Let y be an in-neighbour of x in Tx. As Hx is a k-tree, y
has out-degree at least k− 1 in Hx, and thus has out-degree k in G. Now, by the same
reasoning as above, we get that every vertex of Tx has out-degree k. This proves that for
every special vertex v, every vertex u in Tv has in- and out-degree k.

Let x be a special vertex. We know that Hx is a k-tree. So every vertex of Hx is
contained in a subdigraph isomorphic to a member of Bk−1, and thus has in- and out-
degree k in G. Hence, every vertex of Hx has in- and out-degree k in Hx except the
neighbours of v. So Hv has at most k vertices of mindegree k− 1. If k ⩾ 3, it implies
that Hx is isomorphic to

←→
Kk and thus G =

←→
K k+1, a contradiction. And if k = 2,

it implies that Hx is a symmetric path of odd length (obtained by doing a sequence
of cyclic compositions of digons) and thus G is a symmetric cycle of odd length, a
contradiction.

Theorem 3.4.3

Let G be a connected digraph with ∆max(G) = k. Then −→χ (G) ⩽ k + 1 and
equality occurs if and only if G is a member of Bk.
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Proof : We proceed by induction on k, so we may assume k ⩾ 2. If G is a member of Bk,
then we are done. If G is a k-tree, then it is k-dicolourable because members of Bk−1

are k-dicolourable, and compositions preserve k-dicolourability.
So, by Lemma 3.4.2, G has a vertex v1 with dmax(v1) = k and such that no connected

component of G − {v1} is a k-tree. Let G2, . . . , Gr be the connected components of
G− {v1}. Observe first that each Gi has a vertex with mindegree at most k− 1, so it is
not a member of Bk. For each Gi, either ∆max(Gi) ⩽ k− 1 and since Gi is not a k-tree,
it is k− 1-dicolourable by induction, or, by Lemma 3.4.2, Gi contains a vertex vi such
that the maxdegree of vi in Gi equal k and no connected component of Gi − {vi} is a
k-tree. In the latter case, we choose such a vertex vi and continue this procedure on the
connected components of Gi \ {vi} and so on.

We obtain a set of ordered vertices v1, . . . , vs (we apply the procedure level by level,
putting an arbitrary order inside each level) such that vi has either no in-neighbour or no
out-neighbour in {v1, . . . , vi−1} (because maxdegree of vi in Gi is k = ∆max(G)). So
the digraph induced by {v1, . . . , vs} is acyclic. Moreover, G− {v1, . . . , vs} is made of
vertex disjoint (k− 1)-dicolourable induced subgraph of G. Hence, G is k-dicolourable.

3.5 PA RT I T I O N E D D I C O L O U R I N G

In this section, we adapt a proof of Brooks’ Theorem based on a specific partition
of the vertices introduced by Lovász in [65]. See section 5 of [37] for the undirected
version of the proof as well as a short history of the involved methods. The same kind
of method has been recently used in [21] to prove a generalisation of the directed
Brooks’ Theorem.

Let G = (V,A) be a digraph. We say that G is r-special if for every vertex v ∈ V ,
either dmin(v) < r or dmin(v) = dmax(v) = r (note that last equality is equivalent to
d+(v) = d−(v) = r). Let r1 and r2 be two positive integers. A partition P = (V1, V2)

of V(G) is (r1, r2)-normal if it minimizes r2|A(G[V1])|+ r1|A(G[V2)]|.
Next observation is used frequently in the proof and is a basic property of (r1, r2)-

normal partition.
Observation 3.5.1

Let G be a digraph. If P is a (r1, r2)-normal partition of G with r1 + r2 ⩾
∆max(G) ⩾ 1, then G[V1] is r1-special and G[V2] is r2-special.
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Proof : Assume for contradiction and without loss of generality that G[V1] is not r1-
special. Then there is v1 ∈ V1 such that dmin(v1) ⩾ r1 and dmax(v1) ⩾ r1 + 1 in
G[V1]. Assume without loss of generality that d−

G[V1]
(v1) ⩾ r1 and d+

G[V1]
(v1) ⩾ r1+ 1.

Set V ′1 = V1 \ {v1} and V ′2 = V2 ∪ {v1} and let us prove that the partition (V ′1, V
′
2)

contradicts the fact that (V1, V2) is (r1, r2)-normal. Since r1 + r2 ⩾ ∆max(G), we have
that d+

G[V ′
2]
(v1) ⩽ r2 − 1 and d−

G[V ′
2]
(v1) ⩽ r2. Hence:

(r2|A(G[V1])|+ r1|A(G[V2)]|) − (r2|A(G[V ′1])|+ r1|A(G[V ′2)]|)

⩽ −(2r1 + 1)r2 + r1(2r2 − 1) = −r1 − r2 < 0

a contradiction.

Let G be a digraph, and P a (r1, r2)-normal partition of G with r1+ r2 ⩾ ∆max(G).
We define the P-components of G as the connected components of G[V1] and G[V2].
A P-component is an obstruction if it is a member of Br1 in G[V1] or a member of
Br2 in G[V2]. A path v1 . . . vk in the underlying graph of G is P-acceptable if v1 is in
an obstruction and vertices of P are in pairwise distinct P-components. We say that
a P-acceptable path is maximal if every neighbour of vk is in the same P-component
as some vertex in the path. Given a partition P, to move a vertex u is to move it to the
other part of P.

Observation 3.5.1 together with the fact that digraphs in Bk are k-regular easily
implies the following facts that will be used routinely during the proof:

— If a P-component contains an obstruction, then the obstruction is the whole
P-component.

— If a vertex u is in an obstruction, then the partition created by moving u is again
(r1, r2)-normal.

Lemma 3.5.2. Let k ⩾ 2. Let G = (V,A) be a k-regular connected digraph not in
Bk and let r1, r2 ⩾ 1 such that r1 + r2 = k. There exists a (r1, r2)-normal partition
(V1, V2) such that, for i ∈ {1, 2}, G[Vi] is ri-special and has no obstruction.

Proof : By Observation 3.5.1, for every (r1, r2)-normal partition (V1, V2), G[Vi] is ri-
special for i = 1, 2.

Suppose that the lemma is false and let G be a counterexample. Among the (r1, r2)-
normal partitions of G with the minimum number of obstructions, let P = (V1, V2) be
one with the shortest maximal P-acceptable path v1 . . . vℓ. We refer to the minimality
of the number of obstructions by saying “by minimality of P", and to the minimality of
the P-acceptable path by saying “by minimality of ℓ".
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Throughout the proof, we often move some vertex u that belongs to an obstruction
A. Since this destroys A and results in a (r1, r2)-normal partition, the minimality of P
implies that the move creates a new obstruction and thus the obtained partition has the
same number of obstructions as P. Moreover, this new obstruction contains u and the
neighbours of u in the other part. This implies that the neighbours of u in the other part
are contained in a single P-component C (because obstructions do not have cut-vertex),
and that C ∪ u is an obstruction. Finally, note that an obstruction containing a digon is
a symmetric digraph. These facts are constantly used in the proof.

Let A and B be the P-components containing v1 and vℓ respectively. Let X = NA(vℓ).

Assume X = ∅. Moving v1 creates a new (r1, r2)-normal partition P ′. Since v1 is
adjacent to v2, the new obstruction contains v2. Moreover, A \ v1 is not an obstruction.
So v2, v3 . . . vℓ is a maximal P ′-acceptable path, violating the minimality of ℓ. Hence
|X| ⩾ 1.

V1 V2

A

B

X

v1 v2

v3 v4

Figure 2 – A partition P = (V1, V2), a maximal P-acceptable path along with X, A and B as
defined in the proof of Lemma 3.5.2. Red colour indicates an obstruction. G[V1]
is r1-normal and G[V2] is r2-normal.

Assume now that |X| ⩾ 2 and let x1, x2 be two vertices in X. Let us first prove
that G[X ∪ vℓ is a symmetric complete graph. Assume that x1vℓ ∈ A(G) (the case
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vℓx1 ∈ A(G) is similar). As explained above (in the second paragraph of the proof),
B ∪ x1 and B ∪ x2 are obstructions, which implies that x2vℓ ∈ A(G). This is because
x1vℓ is an arc and obstructions are regular. By moving x1 and then vℓ, we get that
(A \ x1)∪ vℓ is an obstruction, so x2x1 ∈ A(G) (again because obstructions are regular).
Similarly, (A \ x2)∪ vℓ is an obstruction and thus x1x2 ∈ A(G). So x1 and x2 are linked
by a digon, which implies that vℓ is linked to x1 and x2 by digons (this is again because
obstructions are regular and (A\x1)∪ vℓ and (A\x2)∪ vℓ are obstructions). We deduce
that G[X∪ vℓ] is a symmetric complete graph

Let us now prove that G[A ∪ vℓ] is a symmetric complete digraph. Since A is an
obstruction and x1 and x2 are linked by a digon, A induces a symmetric digraph. If A =

X we are done, so we may assume that A has at least three vertices. Since (A \ x1)∪ vℓ
is an obstruction, vℓ has at least two neighbours in A \ x1 and thus |X| ⩾ 3. Since X

induces a complete symmetric digraph, A contains a symmetric triangle and thus must
be a symmetric complete digraph. This implies that G[A∪ vℓ] is a symmetric complete
digraph as announced.

Let us now prove that B and A ∪ B also induce a symmetric complete graph. Since
G[A∪ vℓ] induces a complete symmetric digraph, for every a ∈ A, B∪ a is an obstruc-
tion. This implies that each vertex of A shares the same neighbourhood in B and that B
induces a symmetric digraph. If B = {vℓ} we are done, so B has at least two vertices. Let
a ∈ A. Since B ∪ a is an obstruction, B ∪ a contains a symmetric triangle, and thus B
is a symmetric complete digraph. Finally, it implies that for every a ∈ A, B∪ {a} \ {vℓ}
induces a complete symmetric digraph, and so A ∪ B induces a complete symmetric
digraph.

All together, this proves that G[A] =
←→
K r1+1, G[B] =

←→
K r2 (because for every a ∈ A,

G[A] is an obstruction i.e. is a member of Br2 , and is a complete symmetric digraph).
So A ∪ B induces

←→
K r1+r2+1 =

←→
K k+1 and since G is k-regular, G =

←→
K k+1, a contra-

diction with the hypothesis that G is not a member of Bk.

We may assume from now on that |X| = 1. Assume first that X = {v1}. Moving
v1 creates an obstruction containing both v2 and vℓ, so ℓ = 2. Since the path v1v2 is
a maximal P-acceptable path, v2 = vℓ has no neighbour in the other part besides v1.
Hence, after moving v1 and v2, v2 is the only vertex in its component, and thus cannot
be in an obstruction, a contradiction.

So instead X = {x} and x ̸= v1. Let us prove that A = {x, v1}, that A induces a digon,
and that vℓ and x are linked by a digon. In order to do so, move each v1, v2, . . . , vℓ
in turns. Moving v1 destroys A and thus creates a new obstruction containing v2. For
1 ⩽ i ⩽ ℓ− 2, moving vi creates a new obstruction containing vi+1, which in turns
is destroyed by the move of vi+1, creating a new obstruction containing vi+2. Finally,
after the move of vℓ, vℓ is in an obstruction containing x and since |X| = 1, this new
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obstruction only contains x and vℓ, and thus is a digon. This also implied that A = {v1, x}

and thus induces a digon. Moreover, it implies that r1 = 1.
Moving v1 creates an obstruction containing v2. By minimality of ℓ, in the new

partition P ′ obtained after moving v1, the path v2v3 . . . vℓx is a maximal P ′-acceptable
path. So the obstruction containing v2 (the first obstruction of a maximal acceptable
path) must be a

←→
K 2 (for the same reason A is a

←→
K 2), so v1 and v2 are linked by a

digon and r2 = 1. Now, moving v1 and then v2, the same argument can be applied to
the path v3 . . . vℓxv1 implying that v2 is linked to v3 by a digon. Similarly, each vi for
i = 2, . . . , ℓ− 1 is linked to vi+1 by a digon. This implies that G contains a symmetric
cycle of odd length (namely v1v2 . . . vℓxv1), and since G is k-regular and we clearly
have r1 = r2 = 1, G is equal to this symmetric odd cycle, a contradiction.

Theorem 3.5.3
A connected digraph G has dichromatic number at most ∆max(G)+ 1 and equality
occurs if and only it is a member of B∆max(G).

Proof : We proceed by induction on ∆max. Let G be a connected digraph with ∆max(G) =

k ⩾ 2. As usual, we may assume that G is k-regular. If G is a member of Bk, then we
are done, so we may assume that it is not and we need to prove that G is k-dicolourable.
Hence, by Lemma 3.5.2, there exists a (1, k− 1)-normal partition (V1, V2) such that, for
i = 1, 2, G[Vi] is ri-special and has no obstruction. Set Gi = G[Vi] for i = 1, 2. An
obstruction in G1 is a directed cycle, so G1 is acyclic. We are now going to prove that
G2 is k− 1-dicolourable. Let S ⊆ V(G2) be the set of vertices with maxdegree k in
G2. Hence, every vertex in V(G2) \ S has maxdegree k− 1 (in G2) and has no

←→
K k−1

(because G2 has no obstruction) so, by minimality of k, G2 \ S is (k− 1)-dicolourable.
Since G2 is (k− 1)-special, vertices in S have mindegree at most k− 2 in G2. Hence,
we can greedily extend a k− 1-dicolouring of G2 \ S to G2. Using one more colour for
V1, we get a k-dicolouring of G.

3.6 N O B RO O K S ’ A N A L O G U E F O R ∆min

As explained in the introduction, every digraph G can be dicoloured with
∆min(G) + 1 colours. In this section, we prove that given a digraph G, deciding if it
is ∆min(G)-dicolourable is NP-complete. It is thus unlikely that digraphs satisfying
−→χ (G) = ∆min(G) + 1 admit a simple characterization, contrary to the digraphs
satisfying −→χ (G) = ∆max(G) + 1.
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It is known that for all k ⩾ 2, k-DICOLOURABILITY is NP-complete [26], where
k-DICOLOURABILITY is the following problem:
Input: A digraph G.
Question: Is G k-dicolourable?

Theorem 3.6.1
For all k ⩾ 2, k-DICOLOURABILITY is NP-complete even when restricted to di-
graph G with ∆min(G) = k.

Proof : Let k ⩾ 2 be a fixed integer. As is customary, membership to NP is clear. Given
a digraph G, we are going to construct a digraph G ′ such that ∆min(G

′) ⩽ k and G is
k-dicolourable if and only if G ′ is k-dicolourable.

Let G = (V,A) be a digraph. We construct G ′ as follows:
— For every vertex u of G, put k+ 1 vertices in G ′: u−, u+, u1, . . . , uk−1.
— for each vertex u, G ′[{u−, u1, . . . , uk−1}] and G ′[{u+, u1, . . . , uk−1}] are complete

symmetric digraphs, and u−u+ ∈ A(G ′).
— For every uv ∈ A(G), u+v− ∈ A(G ′).

For every vertex u ∈ V(G), we have d−
G ′(u

+) = d+
G ′(u

−) = k and for i =

1, . . . , k− 1, d+
G ′(ui) = k. Hence, ∆min(G

′) ⩽ k.

Claim 3.6.1.1. If G is k-dicolourable, then G ′ is too.

Proof of Claim : Let φ be a k-dicolouring of G. For every vertex u, assign to u− and
u+ the colour φ(u), and the k− 1 other colours to {u1, . . . , uk−1}. We claim this is a
proper k-dicolouring of G ′. Suppose it is not. Let C be a monochromatic directed cycle
in G ′. It cannot use any vertex ui as these vertices have a colour distinct from all of their
neighbours. Thus C only uses arcs of the form u−u+ or u+v− which easily implies the
existence of a monochromatic directed cycle in G, a contradiction. □

Claim 3.6.1.2. If G ′ is k-dicolourable, then G is too.

Proof of Claim :
Let φ be a k-dicolouring of G ′. For every vertex u ∈ V(G), for i = 1, . . . , k− 1,

the vertices ui receive pairwise distinct colours. So, φ(u+) = φ(u−). Hence, for every
vertex u ∈ V(G), assigning the colour φ(u+) to u gives a valid k-dicolouring of G. □





4
A B RO O K S ’ T H E O R E M F O R L O C A L A R C - C O N N E C T I V I T Y

This chapter is built upon a joint
work with Pierre Aboulker and
Pierre Charbit, published in [5].

In this chapter, we extend directed Brooks’ theorem to local arc-connectivity, char-
acterize extremal digraphs and describe an algorithm to recognize them.

4.1 I N T RO D U C T I O N

4.1.1 The undirected case

As discussed in Chapter 3, it is an easy observation that, for every graph G, χ(G) ⩽
∆(G) + 1, where ∆(G) is the maximum degree of G. Moreover, equality holds for
odd cycles and complete graphs, and the chromatic number of a graph equals the
maximum chromatic number of its connected components. This leads to a full char-
acterization of graphs G for which χ(G) = ∆(G) + 1, famously known as Brooks’
Theorem. Let B2 be the set of odd cycles and for k ̸= 2, let Bk = {Kk+1}.
Theorem 4.1.1 (Brooks’ Theorem [29])

Let G be a graph. Then χ(G) = ∆(G) + 1 = k + 1 if and only if one of the
connected components of G is in Bk.

We recall that, given two vertices u, v of G, λ(u, v) is the maximum number of
edge-disjoint paths linking u and v, and λ(G) is the maximum local edge connectivity

57
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of G, that is maxu ̸=v λ(u, v). Mader [69] proved that for every graph G, χ(G) ⩽
λ(G) + 1. Moreover, it is clear that λ(G) ⩽ ∆(G). Thus, for every graph G,

χ(G) ⩽ λ(G) + 1 ⩽ ∆(G) + 1

Hence one can ask for graphs G for which

χ(G) = λ(G) + 1 (1)

Exception of Brooks’ Theorem of course satisfies (1), but it turns out that there are
more.

To describe them, we need a famous construction first introduced by Hajós [45]
to construct an infinite family of k-critical graphs. Let G1 and G2 be two graphs,
with uv1 ∈ E(G1) and v2w ∈ E(G2). The Hajós join of G1 and G2 with respect to
(uv1, v2w) is the graph G obtained from the disjoint union of G1 − uv1 and G2 −

v2w, by identifying v1 and v2 to a new vertex v, and adding the edge uw.
Recall that an odd wheel is a graph obtained from an odd cycle by adding a vertex

adjacent to every vertex of the odd cycle. Note that K4 is an odd wheel and that odd
wheels satisfy (1).

One can prove that the Hajós join G of two graphs G1 and G2 satisfies (1) if and
only if both G1 and G2 satisfies it. Moreover, the maximum local edge-connectivity
of a graph equals the maximum local edge connectivity of its blocks.

This leads to the characterization of graphs G satisfying (1), proven by Aboulker
et al. [9] for graphs G with χ(G) ⩽ 4, and by Stiebitz and Toft [88] for χ(G) ⩾ 5.

Let Hk = Bk when k ⩽ 2, let H3 be the smallest class containing all odd wheels
and closed under taking Hajós join, and for k ⩾ 4, let Hk be the smallest class of
graphs containing Kk and closed under taking Hajós join.
Theorem 4.1.2 ([88])

Let G be a graph. Then χ(G) = λ(G) + 1 = k+ 1 if and only if a block of G is
in Hk.

The goal of this chapter is to generalize this result to digraphs. Note that this result
has already been generalized for hypergraphs. Our result also generalizes this case in
a certain sense, we explain that in Section 4.7.
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4.1.2 Our result: the directed case

Brooks’ Theorem has been generalized to digraphs by Mohar [72]. In Chapter 3,
we discussed how there are several notions of maximum degree for a digraph, and
found out that the most suitable one to generalize Brooks’ theorem is the following:
given a digraph D, let ∆max(D) be the maximum over the vertices of G of the maxi-
mum of their in-degree and their out-degree.

This leads to the directed Brooks’ Theorem. Let B⃗1 be the set of directed cycles,

let B⃗2 be the set of symmetric odd cycles and, for k = 0 and k ⩾ 3, let B⃗k = {
↔
Kk+1}.

Theorem 4.1.3 (Directed Brooks’ theorem [72], see also [2])

Let D be a digraph. Then −→χ (D) = ∆max(D) + 1 = k+ 1 if and only if a strong
component of D is in B⃗k

Let D be a digraph. Recall that, given a pair of ordered vertices (u, v), we denote
by λ(u, v) the maximum number of arc-disjoint directed paths from u to v, and by
λ(D) the maximum local arc connectivity of D, that is maxu ̸=vλ(u, v). Neumann-
Lara [73] proved that for every digraph D,−→χ (D) ⩽ λ(D)+ 1. Since we clearly have
that λ(D) + 1 ⩽ ∆max(D) + 1, we get that for every digraph D:

−→χ (D) ⩽ λ(D) + 1 ⩽ ∆max(D) + 1

The main result of this chapter is a full characterization of digraphs D for which

−→χ (D) = λ(D) + 1 (2)

when −→χ (D) ⩾ 4. This generalizes directed Brooks’ Theorem and Theorem 4.1.2 for
digraphs with a dichromatic number at least 4.

There are two easy observations one can make about digraphs that satisfy 2. First,
a digraph satisfies this property if and only if one of its strong components satisfies it.
Indeed, for both χ and λ, the value for a digraph is the maximum of the values of its
strong components, which implies our claim because −→χ (G) ⩽ λ(D) + 1 for every
digraph. Second, and for the same exact reason, if a digraph D is strongly connected
but has cutvertices, then D satisfies 2 if and only if one of its blocks satisfies 2. Note
that these blocks also induce strongly connected digraphs.
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Hence our main theorem will be a structural characterization of the class
of k-extremal digraphs (for k ⩾ 3 and k = 1) where a digraph D is k-
extremal if D is strongly connected, its underlying graph is 2-connected, and
−→χ (D) = k+ 1 = λ(D) + 1.

Characterizing 1-extremal digraphs is rather easy, we will prove in Section 4.3
(Theorem 4.3.2) that they are exactly the class of directed circuits. Studying k-
extremal digraphs for larger values of k requires more engineering. Mimicking the
construction appearing in Theorem 4.1.2, we need to come up with an analogue of
Hajós joins for digraphs. As a matter of fact, we will need a wild generalization of
Hajós join, giving a new way to construct k-dicritical digraphs that is interesting on
its own.

The most natural way to generalize Hajós join is to take the same definition, and
replace edges by digons. Given two vertices u and v, we set [u, v] = {uv, vu}.
Definition 4.1.4 (Bidirected Hajós join)

Let D1 and D2 be two digraphs, with [u, v1] ⊆ A(D1) and [v2, w] ⊆ A(D2). The
bidirected Hajós join of D1 and D2 with respect to ([u, v1], [w, v2]) is the digraph
D obtained from the disjoint union of D1− [u, v1] and D2− [w, v2], by identifying
v1 and v2 to a new vertex v, and adding the digon [u,w].

Bidirected Hajós joins were first introduced and studied in [18].
Still inspired by the Hajós joins, the so-called directed Hajós join, first introduced

in [55] and also studied in [18] is defined as follows. See for example Figure 3.
Definition 4.1.5 (Directed Hajós join)

Let D1 and D2 be two digraphs, with uv1 ∈ A(D1) and v2w ∈ A(D2). The
directed Hajós join of D1 and D2 with respect to (uv1, v2w) is the digraph D

obtained from the disjoint union of D1−uv1 and D2− v2w, by identifying v1 and
v2 to a new vertex v, and adding the arc uw.

These two operations are particularly interesting because one can prove that the
bidirected (directed) Hajós join D of two digraphs D1 and D2 is k-dicritical if and
only if both D1 and D2 are k-dicritical. They, therefore, provide a way to construct
an infinite family of k-dicritical digraphs. They are also primordial for us because
D satisfies (2) if and only if both D1 and D2 do. Thus, they also provide a way to
construct an infinite family of digraphs satisfying (2).
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v

wuu
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D1

w
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D2 D

Figure 3 – D is a directed Hajós join of D1 and D2.

But these two joins are not enough to capture all digraphs satisfying (2). In order
to do so, we need to define Hajós tree joins, that can be seen as a generalization of
bidirected Hajós join. See Figure 4.
Definition 4.1.6 (Hajós tree join and Hajós star join)

Given
— a tree T embedded in the plane with edges {u1v1, . . . , unvn}, n ⩾ 2,
— A circular ordering C = (x1, . . . , xℓ) of the leaves of T , taken following the

natural ordering given by the embedding of T , and
— for i = 1, . . . , n, Di, a digraph such that V(Di)∩V(T) = {ui, vi}, [ui, vi] ⊆

A(Di),
— For 1 ⩽ i ̸= j ⩽ n, V(Di) \ {ui, vi}∩ V(Dj) \ {uj, vj} = ∅
we define the Hajós tree join T(D1, . . . , Dn;C) to be the digraph obtained from

the Di by adding the directed cycle C = x1 → x2 → . . .→ xℓ → x1.
C is called the peripheral cycle of D and vertices u1, v1, . . . , un, vn are the

junction vertices of D (note that there are n− 1 of them).
When T is a star, we call it Hajós star join.

Note that, when T is the path on three vertices, we recover a bidirected hajós join.
The basic idea of the Hajós tree join is the following: if each Di is k-dicritical,

then any (k− 1)-dicolouring of Di− [ai, bi] give the same colour to ai and bi, which
implies that in any (k− 1)-dicolouring of D−A(C), all the junction vertices receive
the same colour, and thus D is not (k− 1)-dicolourable. Actually, we can prove that
D satisfies (2) if and only each of the Di does. Hence, Hajós tree joins also provides
a way to construct an infinite family of digraphs satisfying (2).
Definition 4.1.7

Let H⃗3 be the smallest class of digraphs containing all bidirected odd wheels and
closed under taking directed Hajós joins and Hajós tree joins, and for k ⩾ 4, let H⃗k
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Figure 4 – T is a tree, and G1 illustrates the general shape of a Hajós tree join built from T .
Each block represents one of the Di, where the removed digons corresponding to
the edges of T are drawn with dotted green. The circular ordering is (a, b, h, i, d),
it follows the natural ordering given by the embedding of T . G2 is the same as G1

where each of the Di is
↔
K4 minus a digon. We have that −→χ (G2) = λ(G2) + 1 =

4. Finally, G3 shows the importance of taking a circular ordering corresponding
to an embedding of T for the peripheral cycle. Indeed, for G3, the ordering is
(a, b, i, h, d) which does not correspond to any embedding of T . Observe that
−→χ (G3) = 4 < λ(G3) + 1 = 5. To see that λ(G3) = 4, observe that there are four
(coloured) arc-disjoint eg-dipaths.
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be the smallest class of digraphs containing
↔
Kk+1 and closed under taking directed

Hajós joins and Hajós tree joins.

Theorem 4.1.8

Let k ⩾ 3. Let D be a digraph. Then −→χ (D) = λ(D) + 1 = k+ 1 if and only if a
strong biconnected component of D is in H⃗k

In Section 4.6, we also give an algorithm that decides in polynomial time if a
digraph D belongs to H⃗k.

The rest of the chapter is organized as follows. In Section 4.3 we prove several
important structural properties of k-extremal digraphs. In Section 4.4 we prove a first
step towards the main theorem by giving a decomposition theorem for the class, and
in the following section we give the final proof of Theorem 4.1.8. In Section 4.6 we
give a polynomial time algorithm to recognize k-extremal digraphs, and in the last
section, we discuss the case k = 2 (open).

4.2 T O O L S

In [70], Menger proved the following fundamental result connecting dicuts and
arc-disjoint dipaths:
Theorem 4.2.1 (Menger Theorem [70])

Let D be a directed multidigraph and let u, v ∈ V(D) be a pair of distinct vertices.
Then λ(u, v) = ∂+(U) where (U,U) is a minimum dicut separating u from v.

Lovász [68] proved the following result (note that Lovász proved it for digraphs,
but the proof also works for multidigraphs):
Theorem 4.2.2 (Lovász [68])

Let D be a multidigraph in which λ(x, y) = λ(y, x) for any x, y ∈ V(D). Then
D is Eulerian.

The next lemma is crucial as it describes the structure of minimal cuts in k-extremal
digraphs.

Lemma 4.2.3. Let D be a digraph such that −→χ (D) > k. If (X,X) is a dicut of D of
size at most k such that D[X] and D[X] are both k-dicolourable, then there exists a
dicut (M,R) (for monochromatic and rainbow) of D such that
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— (M,R) = (X,X) or (M,R) = (X,X),
— In every k-dicolouring of D[M], the vertices in M∩N(R) all receive the same

colour,
— In every k-dicolouring of D[R], all k colours must appear in R∩N(M).

In particular, the cut has a size of exactly k and for every k-colouring of R, there is
exactly one arc in each direction between M and each of the k colour classes of R.

Proof : Assume φX and φX are k-dicolouring of respectively D[X], and D[X]. Let B
be the bipartite graph with parts U = {1, . . . , k} and V = {1, . . . , k}, and edge-set
{φX(u)φX(v) | uv ∈ A(D), u ∈ X, v ∈ X)}. Note that by construction, there is an
injection from E(B) to the set of arcs from X to X, so that |E(B)| ⩽ k. Also if a vertex
of B has degree 0 it means the corresponding colour is not used in the dicolouring of X
or X.

Let H be the complement of B, that is V(B) = V(H) and E(H) = {uv | u ∈ U, v ∈
V, uv /∈ E(B)}.

Suppose first that H has a perfect matching M. Let φ : V(D) ← [k] be defined as
follows: for every x ∈ X, φ(x) = φX(x) and, for every x ∈ X, if φX(x) = i, then
φ(x) = j where ij ∈ M. There is no monochromatic dicycle in D[X], since φ is a
permutation of φX on X, and there is no monochromatic arc from X to X. Thus φ is a
k-dicolouring of D, a contradiction.

Thus, H has no perfect matching. By Hall’s marriage theorem, there is Z ⊆ U such
that |NH(Z)| < |Z|. Thus, there are all possible edges between Z and NH(Z) in B and
by counting the number of these edges we get:

k ⩾ |E(B)| ⩾ |Z|(k− |NH(Z)|)

⩾ |Z|(k− (|Z|− 1))

Hence (k− |Z|)(|Z|− 1) ⩽ 0. But as 1 ⩽ |Z| ⩽ k, this implies |Z| = 1 or |Z| = k.
In both cases, we have ∆(B) = k. but since the dicut (X,X) contains at most k arcs, it
means the digraph B is simply a star with k leaves, which is exactly what we claim.

Corollary 4.2.4
Let D be a digraph and V = V1 ∪ V2 be a partition of its vertex. If the dicut
(V1, V2) contains strictly less than k arcs, and −→χ (D[Vi]) ⩽ k for i = 1, 2, then
−→χ (D) ⩽ k. As a consequence for any digraph −→χ (D) ⩽ λ(D) + 1.

When proving that some digraphs have small maximum local edge connectivity,
we will often use the following Lemma:
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Lemma 4.2.5. Let D be a digraph, u ̸= v ∈ V(D) and P a uv-dipath. Then λ(D+

uv−A(P)) ⩽ λ(D).

Proof : Let H = D+ uv \A(P). Assume for contradiction that there exists x, y ∈ V(D)

that are linked by λ(D) + 1 arc-disjoint xy-dipaths. Since these dipaths cannot all exist
in D, one of them contains the arc uv. Then, by replacing uv by P, we obtain λ(D) + 1

arc-disjoint xy-dipaths in D, a contradiction.

4.3 F I R S T P RO P E RT I E S O F k - E X T R E M A L D I G R A P H S

Recall that a digraph D is k-extremal if it is biconnected, strong and −→χ (D) =

λ(D) + 1 = k+ 1. The following lemma proves easy but fundamental properties of
k-extremal digraphs that will be used constantly in the proofs.

Lemma 4.3.1. Let k ⩾ 1, and let D be a k-extremal multidigraph. Then D is Eule-
rian, (k+ 1)-dicritical and λ(x, y) = k for every pair of distinct vertices x and y. In
particular, all minimum dicuts (X,X) of D satisfies ∂+(X) = ∂−(X) = k

Proof : Let D be a k-extremal multidigraph, and assume D is a minimal counter-example.
We first prove that D is (k+ 1)-vertex-dicritical. We proceed by contradiction. Let

X ⊊ V(D) be minimal such that −→χ (D[X]) = k + 1. By minimality of X, D[X] is
biconnected and strong. Moreover, since k+ 1 = −→χ (D[X]) ⩽ λ(D[X]) + 1 ⩽ λ(D) +

1 ⩽ k+ 1, we have λ(D[X]) = k. So D[X] is k-extremal and thus, by minimality of D,
λD[X](u, v) = k for every pair of distinct vertices u, v in X.

Let x ∈ X such that x has an out-neighbour in X (it exists because D is strong). Let
R+(x) (resp. R−(x)) be the set of vertices y ∈ V(D) \ X such that there is a xy-dipath
(resp. a yx-dipath) with vertices in X ∪ {x}. Let y ∈ R+(x). Since D is strong, there
exists a shortest dipath P from y to X. Let x ′ ∈ X be the last vertex of P. If x ̸= x ′, then
λD(x, x

′) ⩾ λD[X](x, x
′) + 1 = k+ 1, a contradiction. So x = x ′ and thus y ∈ R−(x).

Hence, R+(x) ⊆ R−(x) and similarly R−(x) ⊆ R+(x). So R+(x) = R−(x) and we set
R(x) = R+(x). Since D is biconnected, there exists a shortest path P = x1 . . . xℓ (in the
underlying graph of D) linking X \ {x} with R(x) with x1 ∈ X and xℓ ∈ R(x). If ℓ ⩾ 3,
then xℓ−1 ∈ V(D) \ (X∪ R(x)). But then if xℓ−1xℓ ∈ A(D), then xℓ−1 ∈ R−(x) and if
xℓxℓ−1 ∈ A(D), then xℓ−1 ∈ R+(x), and thus xℓ−1 ∈ R(x) in both cases, a contradiction.
So ℓ = 2. But then λD(x1, x) = k+1 or λD(x, x1) = k+1, a contradiction. This proves
that D is (k+ 1)-vertex-dicritical.

Let x, y ∈ V(D) and assume for contradiction that λD(x, y) ⩽ k − 1. Then, by
Menger Theorem 4.2.1, D has a dicut (X,X) of size at most k− 1 with x ∈ X and y ∈ X.
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We have that −→χ (X) ⩽ k and −→χ (X) ⩽ k and thus, by Corollary 4.2.4, −→χ (D) ⩽ k, a
contradiction.

Let xy ∈ A(D), and let H = D− xy. Since λD(x, y) = k, λH(x, y) = k− 1 and, as
above, −→χ (H) ⩽ k. So D is k+ 1-dicritical.

Finally, by Theorem 4.2.2, D is Eulerian.

As a direct consequence, we can prove the characterization of 1-extremal digraphs.
Theorem 4.3.2

A digraph is 1-extremal if and only if it is a directed cycle.

Proof : It is clear that all directed cycles are 1-extremal. Conversely, let D be a 1-extremal
digraph. Then −→χ (D) = 2, thus D admits an induced directed cycle on vertex set
X ⊆ V(D). By Lemma 4.3.1, D is 2-dicritical. But −→χ (D[C]) = 2, thus X = V(D).
Hence, D is a directed cycle.

Since a k-extremal digraph is k + 1-dicritical, for any arc uv there exists a k-
dicolouring of D − uv, and if we put back the arc, then all monochromatic cycles
must go through uv, and thus correspond to a monochromatic vu-dipath. In the case
of a digon, we can say more.

Lemma 4.3.3. If D is k-extremal and [uv] ⊆ A(D), there exists a k-dicolouring
of D− [uv] such that there is no monochromatic uv-dipath nor any monochromatic
vu-dipath.

In other words, there exists an assignment of k colours to the vertices of D such
that the only monochromatic cycle is the digon [uv].
Proof : Consider a digon [uv] in a k-extremal digraph D. There must be a minimal cut

with k arcs in each direction separating u from v, so let (M,R) be such a cut as in the
statement of Lemma 4.2.3. Assume without loss of generality that u ∈ M and v ∈ R.
Since D is vertex critical, we can give a proper dicolouring to both D[M] and D[R]

and up to permuting the colours we assign colour 1 to u and v. By the conclusion of
Lemma 4.2.3 regarding the structure of the cut (each colour class in R has exactly one
arc going to M and one arc coming from M), the only possible monchromatic cycle is
the digon uv

In this chapter, we will sometimes need to contract one side of a minimum dicut
and apply induction on the obtained digraph. For this to work properly, we need to
ensure that the dicut does not isolate any vertex, so that the obtained digraph is strictly
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smaller than the original digraph. To prove that we can always find such a dicut, we
use a method derived from [75] (see also Section 3 of [2] for its use in proving Brooks’
theorem for digraphs).

Lemma 4.3.4. Let k ⩾ 4. If all minimum dicuts of a k-extremal digraph D isolate a

vertex, then D =
↔
Kk+1.

Proof : Let D be a k-extremal digraph in which every minimum dicut isolates a vertex.

If every vertex of D has indegree and outdegree at most k, then D =
↔
Kk+1 by Theo-

rem 4.1.3. Otherwise, since every vertex of D has indegree and outdegree at least k,
D has a vertex with outdegree strictly greater than k or a vertex with indegree strictly
greater than k.

If there are two distinct vertices u and v with dmax(u) ⩾ k + 1 and dmax(v) ⩾
k + 1, then a minimum uv-dicut does not isolate u nor v (because D is Eulerian by
Lemma 4.3.1). So there is a unique vertex u with dmax(u) ⩾ k+ 1.

Let M ⊆ V(D) be a maximal set of vertices such that u ∈ M and D[M] is acyclic.
Then every vertex of V(D) \M has outdegree and indegree at most k− 1 in V(D) \M,
i.e. ∆max(D[V(D) \M]) ⩽ k− 1. As −→χ (D[M]) = 1 and −→χ (D) = k+ 1, we have
that −→χ (D[V(D) \M]) ⩾ k ⩾ ∆max(D[V(D) \M]) + 1. By Theorem 4.1.3 applied on

D[V(D) \M], there exists K ⊆ V(D) \M such that D[K] =
↔
Kk. As every vertex of K

has in- and outdegree exactly k in D and k− 1 in D[K], ∂+(K) = ∂−(K) = k. Thus
(K,K) is a minimum dicut and thus V(D) \ K = {u} by hypothesis, a contradiction to
the fact that dmax(u) ⩾ k+ 1.

When looking for a similar result for 3-extremal digraphs, we rather use a method
derived from the one in [65] (see also Section 5 of [2] for its use in proving Brooks’
theorem for digraphs).

Lemma 4.3.5. If all minimum dicuts of a 3-extremal digraph D isolate a vertex, then

D =
↔
W2ℓ+1 for some ℓ ⩾ 1 or D is a directed Hajós join or a bidirected Hajós join

of two digraphs.

Proof : Let D be a 3-extremal digraph in which every minimum dicut isolates a vertex,
and assume for contradiction that D is not a symmetric odd wheel nor a directed Hajós
join. Similarly to the proof of Lemma 4.3.4, we can prove that there is a unique vertex
u with d+(u) = d−(u) ⩾ 4 and for every v ∈ V(D) \ u, d+(v) = d−(v) = 3.

Let P = (X, Y) be a partition of V(D). We say that P is a special partition if u ∈ X,
D[X] is acyclic and X has maximum size among all sets X ′ such that u ∈ X ′ and D[X ′]
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is acyclic. Note that if P = (X, Y) is a special partition, then every vertex of Y has at
least one in-neighbour and one out-neighbour in X, and thus has in- and outdegree at
most 2 in D[Y].

An obstruction of P is a connected component of D[Y] isomorphic to a symmetric
odd cycle. Since obstructions are 2-regular, a connected component of D[Y] contains an
obstruction if and only if it isomorphic to an obstruction. Note also that every special
partition has at least one obstruction, for otherwise, by Theorem 4.1.3, −→χ (D[Y]) ⩽ 2

and thus −→χ (D) ⩽ 3, a contradiction.
P is said to be a super-special partition if it is special and it minimizes the number of

obstructions among all special partitions.
We call the following operation switching x and y.

Claim 4.3.5.1. Let P = (X, Y) be a super-special partition. Let y be a vertex in an
obstruction of P, and x ∈ X \ {u} be a neighbour of y. Then P ′ = (X ∪ {y} \ {x}, Y ∪
{x} \ {y}) is a super-special partition, and x is in an obstruction of P ′.

Proof of Claim : Suppose without loss of generality that xy ∈ A(D). Let Z ⊆ Y be
the vertex set of the obstruction containing y. As d−(y) = 3 and y has 2 in-neighbours
in Z, y has no in-neighbour in X \ {x}. Thus D[X ∪ {y} \ {x}] is acyclic. As x ̸= u, P ′

is special. Since removing any vertex of a symmetric odd cycle yields a digraph that
is not a symmetric odd cycle, D[Z \ {y}] is not a symmetric odd cycle. Thus x is in an
obstruction of P ′ and P ′ is super-special. □

The switching operation is particularly useful thanks to the following claim:

Claim 4.3.5.2. Let P = (X, Y) be a super-special partition, and Z the vertex set of an
obstruction of P. Vertices in X \ u have at most one neighbour in Z.

Proof of Claim : Let Z = {v1, . . . , vs} and vi and vi+1 are linked by a digon for
i = 1, . . . , s (subscript are taken modulo s). Suppose for contradiction that there is x ∈
X \ {u} such that x is a neighbour of vi and vj for some i ̸= j. By claim 4.3.5.1, we can
switch x and vi to obtain the super special partition P ′ = (X ∪ {vi} \ {x}, Y ∪ {x} \ {vi}).
Since x is a neighbour of vj, the obstruction of P ′ containing x is D[Z ∪ {x} \ {a}], i.e.
D[Z ∪ {x} \ {a}] is a symmetric odd cycle. Hence, x is linked by a digon to vi−1 and
vi+1. Now, by switching x and vi+1 in P, we get that x is also linked by a digon to vi+2

and thus is linked by a digon to every vertex of Z. This implies that s = 3, and thus the
dicut (V(Z), V(D) \ V(Z)) has size 3, so it is a minimum dicut that does not isolate a
vertex, a contradiction. □

Let P1 = (X1, Y1) be a super-special partition of D and let Z1 an obstruction of P1. If
no vertex of Z1 has a neighbour in X1 \ {u}, then D[Z ∪ {u}] is a symmetric odd wheel
and we are done. So there exist x1 ∈ X1 \ {u} and y1 ∈ Z1 such that x1 and y1 are
adjacent. Set Q1 = Z1 \ {y1}.
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By claim 4.3.5.1, P2 = (X2, Y2) with X2 = X1 ∪ {y1} \ {x1} and Y2 = Y1 ∪ {x1} \ {y1}
is a super-special partition and x1 is in an obstruction Z2 of P2. Let Q2 = Z2 \ {x1},
so Q2 is a symmetric path and is a connected component of D[Y1]. Observe that no
vertex of Q2 is adjacent with y1. If y1 is the only vertex in X2 \ {u} with a neighbour in
V(Z2), then either x1 and y1 are linked by a digon and D is a bidirected Hajós join (by
Lemma 4.4.7, because deleting u and [x1, y1] separates Z2 from the rest of the digraph),
or D is a directed Hajós join (by Lemma 4.4.4, because deleting u and the arc linking x1
and y1 separates Z2 from the rest of the digraph). A contradiction in both cases. Hence,
there is x2 ∈ X2 \ {u, y1} such that x2 has a neighbour y2 ∈ V(Z2).

Let P3 = (X3, Y3) where X3 = X2 ∪ {y2} \ {x2} and Y3 = Y2 ∪ {x2} \ {y2}. By
claim 4.3.5.1, P3 is a super-special partition and x2 is in an obstruction Z3 of P3. Note
that, claim 4.3.5.2, x2 has at most one neighbour in Z1 and in Z2, but it has two neigh-
bours in Z3, this implies that Z3 is disjoint from Z1 and Z2. As previously, if y2 is
the only vertex in X3 \ u with a neighbour in Z3, then D is a directed Hajós join or a
bidirected Hajós join, a contradiction. So there exists x3 ∈ X3 \ {u, y1, y2} such that x3
has a neighbour y3 ∈ V(Z3).

This process can be continued and never stop, a contradiction.

Lemma 4.3.6. Let k ⩾ 1. Let D be a k-extremal digraph and let (A,A) be a mini-
mum dicut of D. Then D/A or D/A is k-extremal.

Proof : Set H = D/A and let a be the vertex into which A is contracted in H. Since D is
strong, so is H.

Let us first prove that λ(H) ⩽ k. By Lemma 4.3.1, d+(a), d−(a) = k. Let u, v ∈ H,
and let us prove that λ(u, v) ⩽ k. Since d+(a), d−(a) ⩽ k, the result holds if a ∈ {u, v}.
Let (B,B) be a minimum uv-dicut in D.

|∂D| is submodular, i.e. it satisfies that ∀S, T ⊆ V(D), ∂D(S) + ∂D(T) ⩾ ∂D(S ∪
T) + ∂D(S∩ T).

By Lemma 4.3.1, the local arc-connectivity of any pair of vertices of D is k, so, given
X ⊂ V(D) distinct from ∅ and V(D), we have ∂D(X) ⩾ 2k and equality holds if and
only if |∂+D(X)| = |∂+D(X)| = k.

By submodularity of |∂D|, 4k = |∂D(A)|+ |∂D(B)| ⩾ |∂D(A ∩ B)|+ |∂D(A ∪ B)|.
Moreover, since v ∈ B, A ∩ B ̸= ∅ and A ∪ B ̸= V(D), and it is clear that A ∩ B ̸=
V(D) and A∪B ̸= ∅. Thus |∂D(A∪B)| = 2k, which implies that |∂+H(B \A∪ {a})| ⩽
k, i.e. (B \A∪ {a}, B \A) is a uv-dicut of H of size at most k.

Let us now show that H is biconnected. For every x ∈ A, H \ x = (D \ x)/A is
connected because D \ x is connected. So it suffices to show that H \ a is connected.
Let X, Y be two connected components of H \ a. As H is strong, there must be at least
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one arc from a to X. But as (A,A) is a minimum dicut of D, a has outdegree k in H,
and thus there are at most k− 1 arcs from a to Y. Thus (Y, Y) is a dicut of D of size at
most k− 1, a contradiction. So H is biconnected.

As D is Eulerian, (A,A) is also a minimum dicut of D. Thus D/A is both strong
and biconnected, and λ(D/A) = k.

We now show that either −→χ (H) ⩾ k + 1 or −→χ (D/A) ⩾ k + 1. Let φA be a k-
dicolouring of D[A] and φA a k-dicolouring of D[A]. By Lemma 4.2.3, we may assume
without loss of generality that every vertex N(A) ∩A are coloured 1. , and that every
colour is used by vertices in N(A)∩A.

Let us prove that −→χ (H) ⩾ k+ 1. Suppose for contradiction that H admits a proper
k-dicolouring φH, chosen, up to permuting colours, so that φH(a) = 1. Consider
φ : V(D) → [1, k] such that φ(x) = φA(x) if x ∈ A and φ(x) = φH(x) if x ∈ A.
Since N(A) ∩ A are coloured 1 with respect to φA, it is easy to see that φ is a k-
dicolouring of D, a contradiction.

4.4 H A J Ó S J O I N S - A F I R S T D E C O M P O S I T I O N T H E O R E M

Our main theorem presented in the introduction (Theorem 4.1.8) is a structure
theorem for the class of k-extremal digraphs, in the sense that it is an "if and only
if". The goal of this section is to prove an intermediate result that is a decomposition
theorem for this class (an "only if" theorem). It involves the notion of Hajós bijoin
described just after the statement.
Theorem 4.4.1

Let k ⩾ 3. If D is k-extremal, then:
— either D =

↔
Kk+1

— or D is a symmetric odd wheel (only in the case k = 3),
— or D is a directed Hajós join of two k-extremal digraphs,
— or D is a Hajós bijoin of two k extremal-digraphs.

Definition 4.4.2 (Hajós bijoin and degenerated Hajós bijoin)
Let D1 and D2 be two digraphs. Let ta1, a1w ∈ A(D1) (t = w is possible)

and t and w are in the same connected component of D1 \ a1. Let va2, a2u ∈
A(D2) (u = v is possible) and u and v are in the same connected component of
D2 \ a2. The Hajós bijoin of D1 and D2 with respect to

(
(t, a1, w), (v, a2, u)

)
is the digraph D obtained from the disjoint union of D1 − {ta1, a1w} and D2 −
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{va2, a2u} by identifying a1 and a2 into a new vertex a, and adding the arcs tu

and vw.
If t = w and u ̸= v (or u = v and t ̸= w), we say it is a degenerated Hajós bijoin.
If t = w and u = v, then it is the bidirected Hajós join of D1 and D2 with respect
to ([t, a1], [u, a2]). See Figure 5.

t

w

a

u

v

D

a1

t

w

D1

a2

u

v

D2

Figure 5 – D is the Hajós bijoin of D1 and D2 with respect to (t, a1, w), (u, a2, v).

Note that if t = w and u = v, then we get what we called earlier a bidirected Hajós
join.

4.4.1 Properties of Hajós join and bijoins

For the definition of directed Hajós join, see Definition 4.1.5. We first prove an
essential result about k-extremal digraphs and directed Hajós joins

Lemma 4.4.3. Let k ⩾ 1. Let D be the directed Hajós join of two digraphs D1 and
D2. Then D is k-extremal if and only if both D1 and D2 are.

Proof : Suppose D is a directed Hajós join of two digraphs D1 and D2 with respect to
(uv1, v2w), i.e. there is uv1 ∈ A(D1) and v2u ∈ A(D2) such that D is obtained from
disjoint copies of D1−uv1 and D2− v2w by identifying the vertices v1 and v2 to a new
vertex v and adding the edge uw.

Claim 4.4.3.1 (Theorem 2 in [18]). D is k+ 1-dicritical if and only if both D1 and D2

are.

Let us first suppose that D1 and D2 are k-extremal. By Claim 4.4.3.1, D is k+ 1-
dicritical, so it is also biconnected and strong. Since the maximum local connectivity
of a digraph equal the maximum maximum local connectivity of its blocks, we have
that λ(D− {uw}+ {uv1, v2w}) = λ(D1) = λ(D2) = k, and by Lemma 4.2.5, λ(D) ⩽
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λ(D− {uw}+ {uv1, v2w} = k. Thus k+1 = −→χ (D) ⩽ λ(D)+1 = k+1, so λ(D) = k

and D is k-extremal.
Suppose now that D is k-extremal. By claim 4.4.3.1, both D1 and D2 are (k+ 1)-

dicritical and thus are also strong and biconnected. Since D is strong, it has a wv-dipath,
and this dipath uses only arcs in the copy of D2 −wv2. Let P be such a dipath to
which we add the arc uw at the beginning. Then λ(D + uv −A(P)) ⩽ λ(D) = k,
and since D1 is a subdigraph of D + uv − A(P), we have that λ(D1) ⩽ k. Thus
k+ 1 = −→χ (D1) ⩽ λ(D1) + 1 = k+ 1, so λ(D) = k and D1 is k-extremal. Similarly,
D2 is k-extremal.

If D is a directed Hajós join of two digraphs, then there exists an arc (uw in
Definition 4.1.5), such that D− uw has a cutvertex. The following lemma asserts
that if D is k-extremal, then the converse holds. This is sometimes useful to prove
that D admits a directed Hajós join.

Lemma 4.4.4. If D is k-extremal and there exists an arc a ∈ A(D), such that D− a

is not biconnected, then D is a directed Hajós join.

Proof : Denote a = uw and v be the cutvertex of D− a. We need to prove that uv ̸∈
A(D) and vw ̸∈ A(D). We only prove it for uv, the argument is identical for vw by di-
rectional duality. Assume by contradiction uv ∈ A(D). Let D1 be the digraph induced
by the block of D− a that contains u. Since D is vertex critical by Lemma 4.3.1, D1 is
k-dicolourable, but since uv is an arc, it means the dicolouring contains no monochro-
matic vu-dipath. If we now consider D2 to be the union of all the other blocks of D−a,
then again it admits a k-dicolouring. Up to permuting the colours, we can assume the 2

k-dicolourings agree on the colour of v, and thus get a k-dicolouring of D that is proper:
indeed any dicycle in D is either contained in D1 or D2 or contains a and goes through
v, so must contain a vu-dipath. In all cases it cannot be monchromatic.

Here is the analogue of Lemma 4.4.3 for bijoins, note that we have only one direc-
tion here.

Lemma 4.4.5. Let k ⩾ 3. Let D be a Hajós bijoin of two digraphs D1 and D2. If D
is k-extremal, then both D1 and D2 are k-extremal.

Proof : Let D be a k-extremal digraph, and D is a Hajós bijoin of two digraphs D1 and D2

with respect to
(
(t, a1, w), (v, a2, u)

)
, i.e. there exists tu, vw ∈ A(D) and a ∈ V(D)

such that D \ {a}− {tu, vw} has two connected components with vertex sets V ′1 and V ′2
such that D1 = D[V ′1 ∪ a] + {ta, aw}, and D2 = D[V ′2 ∪ a] + {va, au} and t and w
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are in the same connected component of D1 \ a and u and v are in the same connected
component of D2 \ a.

Let us first prove that D1 is biconnected. Assume for contradiction that D1 has a
cutvertex x. Observe that {t,w, a1} \ x are in the same connected component of D1 \ x.
Indeed, if x = a it is by hypothesis, and otherwise it is because ta, aw ∈ A(D1). Hence,
D \ x has a connected component disjoint from {t, a,w}, and thus x is a cutvertex of D,
a contradiction.

As D is Eulerian, so is D1 by construction. And since an Eulerian connected digraph
is strong, D1 is strong.

Let x, y ∈ V(D1) and let us prove that λD1
(x, y) ⩽ k. Let (X,X) be a minimum

xy-dicut in D, i.e. x ∈ X and y ∈ X. Since D is k-extremal, (X,X) is a minimum
yx-dicut, and thus, up to permuting y and x, we may assume without loss of generality
that a ∈ X. Let XD1

= X ∩ V(D1) and consider the xa-dicut of D (XD1
, XD1

). If
t ∈ X, then ∂+D1

(X) = ∂+D(X) − tu + ta, and otherwise ∂+D1
(X) = ∂+D(X). Hence

|∂+D1
(X)| = |∂+D(X)| = k, so λD1

(u, v) ⩽ k and thus λ(D1) ⩽ k.

Let us now prove that −→χ (D1) ⩾ k+ 1. Suppose D1 admits a k-dicolouring φ1. Let
φ2 be a k-dicolouring of D2 − {va, au} such that φ1(a) = φ2(a) and, if φ1(a) ̸=
φ1(t), such that φ2(u) ̸= φ1(t) (this can always be done because k ⩾ 3). Consider
φ : V(D) → [1, k] such that φ(x) = φ1(x) if x ∈ V(D1) ∪ a and φ(x) = φ2(x) if
x ∈ V(D2).

Since −→χ (D) = k+ 1, D has a monochromatic directed cycle C with respect to φ.
By construction of φ, C goes through tu, or vw or both. If C goes through tu but not
vw, then C contains an at-dipath, which is not monochromatic since ta ∈ A(D1) and
φ1 is a k-dicolouring of D1, a contradiction. Similarly, we get a contradiction if C goes
through vw but not tu. We may thus assume that C uses both tu and vw. In particular,
C contains an uv-dipath Puv included in D2, and a wt-dipath Pwt included in D1. If
φ1(a) = φ1(t), then Pwt plus the arcs ta and aw form a monochromatic dicyle of D1,
a contradiction. Thus φ1(a) ̸= φ1(t) and thus φ(t) ̸= φ(u) by construction of φ, so
C is not monochromatic, a contradiction. This finishes the proof that −→χ (D1) ⩾ k+ 1.

Now, since k+ 1 ⩽ −→χ (D1) ⩽ λ(D1) + 1 ⩽ k+ 1, we have −→χ (D1) = λ(D1) + 1 =

k+ 1. Altogether we get that D1 is k-extremal. Similarly, D2 is k-extremal.

Note that the reciprocal of lemma 4.4.5 does not hold, observe for example that the

Hajós bijoin of two
↔
Kk+1 is k-dicolourable, see Figure 6.

However, we can still prove the following holds:
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Figure 6 – A k-dicolouring of a bijoin of two
↔
K4.

Lemma 4.4.6. Let k ⩾ 3. Let D be a Hajós bijoin of two digraphs D1 and D2. If, for
i = 1, 2, Di is biconnected, strong, Eulerian and λ(Di) ⩽ k, then D is biconnected,
strong, Eulerian and λ(D) ⩽ k.

Proof : Let, for i = 1, 2, Di be a biconnected, strong, Eulerian digraph with λ(Di) ⩽ k.
Let D be a Hajós bijoin of D1 and D2 with respect to

(
(t, a1, w), (v, a2, u)

)
, i.e. there

exists tu, vw ∈ A(D) and a ∈ V(D) such that D \ {a}− {tu, vw} has two connected
components with vertex set V ′1 and V ′2 such that D1 = D[V ′1 ∪ a] + {ta, aw}, and
D2 = D[V ′2 ∪ a] + {va, au} and t and w are in the same connected component of
D1 \ a and u and v are in the same connected component of D2 \ a. Set V1 = V ′1 ∪ a
and V2 = V ′2 ∪ a.

Let us first prove that D is biconnected. Assume for contradiction that D has a cutver-
tex x. Since for i = 1, 2 Di is biconnected, D[V ′i ] = Di \ a is connected, and since
moreover there is an (actually two) arc between D[V ′1] and D[V ′2], D \ a is connected.
Thus x ̸= a. Assume without loss of generality that x ∈ V ′1 and let C be the connected
component of D \ x containing a. Then V2 is included in C, and since there is an arc
between u and V2 and between w and V2, u and w are also in C. Thus a, u and w are
in the same connected component of D \ x, which implies that x is a cutvertex of D1, a
contradiction.

As D1 and D2 are Eulerian, so is D by construction. And since an Eulerian bicon-
nected digraph is strong, D1 is strong.

Let D ′ = D − {tu, vw} + {ta, au, va, aw}. As the blocks of D ′ are D1 and D2,
λ(D ′) ⩽ k. Hence, by applying twice Lemma 4.2.5, we get that λ(D) ⩽ λ(D ′) ⩽ k.

The following lemma is an analogue of Lemma 4.4.4 in the case of Hajós bijoins.
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Lemma 4.4.7. Let k ⩾ 3. Let D be a k-extremal digraph. Suppose there exists
t, u,w ∈ V(D) such that D − {tu, uw} is not biconnected. Then D is a directed
Hajós join or a Hajós bijoin.

Proof : Let a be a cut-vertex of D− {tu, uw}. If t and w are not in the same connected
component of D \ a − {tu, uw}, then D \ a − tu is not connected, and thus D is a
Hajós join. Hence, we can suppose that t and w are in the same connected component
of D \ a− {tu, uw}.

To prove that D is a Hajós bijoin, it remains to prove that ta, aw, ua, au /∈ A(D).
We will prove something a bit stronger.

Claim 4.4.7.1. Let k ⩾ 3. Let D ′ be a k-extremal digraph. Suppose there exists
a, t, u, v,w ∈ V(D ′) such that D ′ − {tu, vw} has two connected components D1, D2

with t,w ∈ V(D1) and u, v ∈ V(D2). Then ta, au, va, aw /∈ A(D ′).

Proof of Claim : Suppose that ta ∈ A(D ′). Let us first prove that D1 + aw is bi-
connected. Assume for contradiction that D1 + aw has a cutvertex x. Observe that
{t,w, a} \ x are in the same connected component of D1 + aw \ x. Indeed, if x = a it
is by hypothesis, and otherwise it is because ta, aw ∈ A(D1). Hence, D ′ \ x has a con-
nected component disjoint from {t, a,w}, and thus x is a cutvertex of D ′, a contradiction.

Since for any two vertices u, v of D ′, λD ′(u, v) = k, we have that
λD ′+aw−{tu,vw}(u, v) ⩾ k − 2 ⩾ 1, and thus D ′ + aw − {tu, vw} is strong.
As D1 + aw is a biconnected component of D ′ + aw− {tu, vw}, D1 + aw is strongly
connected.

Let Pav be any av-dipath in D2, which must exist for λD ′−{tu,vw}(a, v) ⩾
λD ′(a, v) − 2 ⩾ k− 2 ⩾ 1. Then, by Lemma 4.2.5, λ(D ′ + aw−A(Pav) − vw) ⩽
λ(D ′) = k, and since D1 + aw is a subgraph of D ′ + aw − A(Pav) − vw,
λ(D1 + aw) ⩽ k.

Yet D1 + aw is not Eulerian, for D ′ is Eulerian, and the indegree of t does not
change in D1 but its outdegree decreases by 1. Thus, by Lemma 4.3.1, D1 + aw is not
k-extremal, hence −→χ (D1 + aw) ⩽ k. Let φ2 be a k-dicolouring of D2. Let φ1 be a
k-dicolouring of D1+aw chosen so that φ1(a) = φ2(a) and so that if φ1(a) ̸= φ1(t),
then φ1(t) ̸= φ2(u) (which is always possible since k ⩾ 3).

Consider φ : V(D ′)→ [k] such that

φ(y) =


φ1(x1) if y = x

φ1(y) if y ∈ V(D1)

φ2(y) if y ∈ V(D2)
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Since −→χ (D ′) = k+ 1, φ contains a monochromatic dicycle C. Since φ1 and φ2 are
k-dicolourings of respectively D1 and D2, C intersects both V(D1) \ a and V(D2) \ a.
If C contains tu but not vw, then C goes through a, and thus there is a monochromatic
at-dipath in D1 with respect to φ1, a contradiction to the choice of φ1. If C contains
vw but not tu, then C goes through a, and thus there is a monochromatic wa-dipath
in D1 with respect to φ1, a contradiction to the choice of φ1. If C contains both tu

and vw, then there is a monochromatic wa-dipath in D1 with respect to φ. Since
ta, aw ∈ A(D1 + aw), this implies that φ1(a) ̸= φ(t). But then φ(t) ̸= φ(u), a
contradiction.

Thus we have proven that ta /∈ A(D ′). By symmetry, this implies that
ta, au, va, aw /∈ A(D ′). □

Applying this claim with u = v, this proves ta, au, ua, aw /∈ A(D ′) and thus that
D is a Hajós bijoin.

4.4.2 Proof of Theorem 4.4.1

Let k ⩾ 3. We prove the theorem by induction on the number of vertices. Let D
be k-extremal, and assume by contradiction that D is neither a symmetric complete
graph, a symmetric odd wheel, a directed Hajós join, nor a Hajós bijoin.

Given a digraph D, a flower of D is an induced subdigraph F of D isomorphic to
a symmetric path P with an even number of vertices plus a vertex x linked to each
vertex of P by a digon, and such that no internal vertex of P has a neighbour outside
F, while other (that is x and the two extremities of P) have exactly one in-neighbour
and one out-neighbour outside F. The vertex x is called the center of F.

Claim 4.4.7.2. D has a minimum dicut (X,X) such that either k ⩾ 4 and D[X] =
↔
Kk,

or k = 3 and D[X] is a flower of D.

Proof of Claim : By Lemma 4.3.4 and Lemma 4.3.5, there is a minimum dicut (A,A)

such that |A|, |A| > 1. By Lemma 4.3.6, up to permuting A and A, we may assume
that D/A is k-extremal and thus by induction is either a symmetric complete graph
on k + 1 vertices, a symmetric complete wheel, a Hajós bijoin of two k-extremal
digraphs or a directed Hajós join of two k-extremal digraphs. Let a be the vertex into
which A is contracted in D/A.

Suppose there exist two k-extremal digraphs D1 and D2 such that D/A is either a
Hajós bijoin of D1 and D2 with respect to

(
(t, b1, w), (v, b2, u)

)
or a directed Hajós
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join of D1 and D2 with respect to (ub1, b2w), and let b the vertex into which b1
and b2 are identified in D. Then, as b1 and b2 both have outdegree at least k in
respectively D1 and D2, b has outdegree at least 2k− 2 > k in k, and thus b ̸= a.
When one un-contracts the vertex a to get the original digraph D, it is clear that
the structure of the directed Hajós join or Hajós bijoin is preserved, which yields a
contradiction.

Otherwise, D/A is a symmetric complete graph or a symmetric odd wheel in which
a is a vertex of outdegree k. In both cases, taking X = A yields the desired property.
□

We distinguish between two cases depending on whether or not there is a vertex of
X that has a distinct in- and out-neighbour in X.
Case 1: There exists v ∈ X and u,w ∈ X with uv, vw ∈ A(D) and u ̸= w

Let D ′ = D − {uv, vw} + {uw}. Due to Lemma 4.2.5, λ(D ′) ⩽ λ(D) = k.
Let us now show that −→χ (D ′) ⩾ k + 1. Suppose for contradiction that D ′ admits
a k-dicolouring φ. As −→χ (D) = k + 1, φ is not a k-dicolouring of D = D ′ +
{uv, vw}− {uw}, and thus there is a monochromatic dicycle C in D ′ + {uv, vw}−

{uw} containing uv or vw or both. Since v is linked via a digon to all its neighbours
except for u and w, C contains both uv and vw. By replacing the arcs uv and vw

by uw in C, we get a monochromatic dicycle in D ′, a contradiction. Thus k+ 1 ⩽
−→χ (D ′) ⩽ λ(D ′) + 1 ⩽ k+ 1 and hence −→χ (D ′) = λ(D ′) + 1 = k+ 1.

Since there are k arc-disjoint dipaths between any pair of vertices in D, there
are at least k − 2 ⩾ 1 arc-disjoint dipaths between any pair of vertices in D ′,
thus D ′ is strong. But D ′ is not k-extremal, since ∂+

D ′(X) = k − 1 contradicts
Lemma 4.3.1. Thus D ′ is not biconnected. Hence D− {uv, vw} is not biconnected.
By Lemma 4.4.7, this implies that D is a Hajós bijoin or a Hajós join, a contradiction.

Case 2: There are only digons between X and X

Assume D[X] is not strong and let Ct be a terminal component of D[X]. We have
∂+(Ct) ⊆ X and ∂+(Ct) ⩾ k, so the digons linking X and X are all incident with
some vertex of Ct. Thus D is not strong, a contradiction. Hence D[X] is strong.
Case 2a: D[X] is not biconnected.

Consider B = (B1, . . . , Bn) a longest path of blocks in D[X].
Let V(B1) ∩ V(B2) = {a}. There is a digon between V(B1) \ a and X, for other-

wise a is a cutvertex of D. Suppose there is only one digon [b, y] between V(B1) \ a

and X, with b ∈ V(B1) \ a and y ∈ X. Then D \ a− [b, y] is not connected, thus by
Lemma 4.4.7, D is a directed Hajós join or a Hajós bijoin, a contradiction.
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Thus we can assume that there are at least two digons between X and V(B1) \

V(B2), say [a1, y1] and [b1, y
′
1] with a1, b1 ∈ V(B1) \ V(B2) and y1, y

′
1 ∈ X. Simi-

larly, there are two digons between X and V(Bn)\V(Bn−1), say [an, yn] and [bn, y
′
n]

with an, bn ∈ V(Bn) \ V(Bn−1). Note that a1 = b1 and an = bn are possible. As
we have found 4 digons between X and X, this implies that k ⩾ 4.

Set H = B+ [a1, an] and let us prove that λ(H) = k.
By Lemma 4.2.3, a1 and an receive the same colour in all k-dicolouring of D[X],

and since any k-dicolouring of B can easily be extended to a k-dicolouring of D[X],
the same holds for any k-dicolouring of B, and thus −→χ (H) ⩾ k+ 1. Let Pa1an =

a1 → y1 → yn → an and Pana1 = an → yn → y1 → a1. By Lemma 4.2.5,
λ(D+ [a1, an] −A(P1) −A(P2)) ⩽ λ(D) = k, and thus λ(H) ⩽ k. Thus k+ 1 ⩽
−→χ (H) ⩽ λ(H) + 1 ⩽ k+ 1, so λ(H) = k+ 1.

Hence there are k arc-disjoint b1bn-dipaths in H. But replacing any potential use
of a1an by Pa1an and any potential use of ana1 by Pana1 , and considering the dipath
b1 → y ′1 → y ′n → bn, we get k+ 1 arc-disjoint b1bn-dipaths in D, a contradiction.

Case 2b: D[X] is biconnected.
If a vertex a ∈ X is adjacent to every vertex in X, then a is a cutvertex of D, a

contradiction.
Let a, b ∈ X such that there exist a ′, b ′ ∈ X with [a, a ′], [b, b ′] ⊆ A(D). If k = 3,

let them be chosen so that neither a ′ nor b ′ is the center of D[X]. Let D ′ = D[X] +

[a, b]. Since D[X] is strong and biconnected, so is D ′. By Lemma 4.2.3, −→χ (D ′) ⩾
k+1 for in every k-dicolouring φ of D[X], φ(a) = φ(b). By Lemma 4.2.5, λ(D ′) ⩽
λ(D) = k. Thus D ′ is k-extremal.

By induction, D ′ is either a symmetric odd wheel, a symmetric complete graph, a
directed Hajós join of two digraphs D1 and D2 or a Hajós bijoin of two digraphs D1

and D2.
If D ′ is a directed Hajós join of two digraphs D1 and D2, then either a, b ∈ V(D1)

or a, b ∈ V(D2), and thus D is a directed Hajós join, a contradiction.
If D ′ is a Hajós bijoin of two digraphs D1 and D2 with respect to

((t, x1, w), (v, x2, u)), then if either a, b ∈ V(D1) or a, b ∈ V(D2), D is
itself a Hajós bijoin, a contradiction. Otherwise, this means that t = w, v = u and
{t, u} = {a, b}. But then, this contradicts that D[X] is biconnected.

Thus D ′ is symmetric.
Suppose there is no vertex in X \ {a, b} with a neighbour in X, then note that a

and b must both have at least two neighbours in X, for otherwise either D \ [a, a ′]
or D \ [b, b ′] is not biconnected, and thus by Lemma 4.4.7, D is a directed Hajós
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join or a directed bijoin, a contradiction. Note that this implies that k ⩾ 4. Let
a ′, a ′′ ∈ X∩N(a) and b ′, b ′′ ∈ X∩N(b). Then, since λD ′(a, b) = k, we have that
λD[X](a, b) ⩾ k− 1, that is there exist k− 1 arc-disjoint ab-dipaths in D[X]. But
then, since a → a ′ → b ′ → b and a → a ′′ → b ′′ → b are ab-dipath that do not
use any arc of D[X], we have that λD(a, b) ⩾ k+ 1, a contradiction.

Thus, there exists a vertex c ∈ X \ {a, b} with a neighbour c ′ ∈ X. c cannot be
a neighbour of a nor b, for either [a, c] inA(D) or [b, c] ∈ A(D) and in any k-
dicolouring φ of D[X], φ(a) = φ(b) = φ(c) by Lemma 4.2.3, a contradiction. This

implies that D ′ ̸=
↔
Kk+1, and thus k = 3 and D ′ is a symmetric odd wheel. Let x be

the universal vertex of D ′. Since c is neither a neighbour of a nor of b, we have that
x /∈ {a, b, c}. Let d, e be the two other neighbours of c in D. Then, x → d → c,
x→ e→ c, x→ a→ a ′ → c ′ → c and x→ c are 4 > k arc-disjoint xc-dipaths, a
contradiction.

4.5 H A J Ó S T R E E S - S T RU C T U R E T H E O R E M S

At the end of this section, we will prove the main result of this chapter: k-extremal

digraphs are exactly the digraphs in H⃗k, which we recall is a class built from
↔
Kk+1

(for k ⩾ 4) or symmetric odd wheels (for k = 3) using directed Hajós joins and Hajós
tree joins. In order to simplify our arguments, we will prove in fact an equivalence
with another class called ⃗EHTk that is based on a single operation called extended
Hajós tree join (which generalizes Hajós trees) defined below.

An Euler tour is a closed trail that traverses each arc exactly once. Let T be a tree.
An Eulerian list C of T is a circular list of the vertices of T encountered following an

Eulerian tour of
↔
T . A partial Eulerian list C ′ of T is a circular sublist of an Eulerian

list of T with the following properties: each leaf of T is in C ′, and each non-leaf
vertex of T appears at most once in C ′.
Definition 4.5.1 (Extended Hajós tree join, Figure 7)

Given
— a tree T with edges {u1v1, . . . , unvn}, n ⩾ 2,
— a partial Eulerian list C = (x1, . . . , xℓ) of T , and
— for i = 1, . . . , n, Di is a digraph such that V(Di) ∩ V(T) = {ui, vi}, and

[ui, vi] ⊆ A(Di)

— For 1 ⩽ i ̸= j ⩽ n, V(Di) \ {ui, vi}∩ V(Dj) \ {uj, vj} = ∅
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We define the extended Hajós tree join T(D1, . . . , Dn;C) to be the digraph D

obtained from the Di by adding the dicycle C = x1 → x2 → . . .→ xℓ → x1.
We say that D is the extended Hajós tree join of (T,D1, . . . , Dn) with respect

to C.
C is called the peripheral cycle of D and vertices u1, v1, . . . , un, vn are the

junction vertices of D (note that there are n− 1 of them).
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Figure 7 – A cartoonish drawing of an extended Hajós tree join D. Its peripheral cycle is in
red. Removed digons are in dashed green. T is the corresponding tree.

Observe that an extended Hajós tree join in which the partial Eulerian list only uses
leaves of T is a Hajós tree join. Observe also that the peripheral may be a digon, in
the case where T is a path and the dicycle only goes through the extremities of T .
Definition 4.5.2

For k ⩾ 4, let ⃗EHTk be the smallest class of digraphs that contains
↔
Kk+1 and is

closed under taking extended Hajós tree joins. Let ⃗EHT3 be the smallest class of

digraphs that contains
↔
W2ℓ+1, for every integer ℓ ⩾ 1, and is closed under taking

extended Hajós tree joins.
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The two following lemmata imply (by induction on the number of vertices) that
⃗EHTk ⊂ H⃗k.

Lemma 4.5.3. Let D ∈ ⃗EHTk Then D is either a directed Hajós join or a Hajós tree
join of digraphs in ⃗EHTk.

Proof : Denote D = T(D1, . . . , Dn;C) as in Definition 4.5.1. If C does not use any
internal vertex of T , then D is a Hajós tree join, so we can assume C uses an internal
vertex v of T . Let X be the connected component of T \ v that contains the out-neighbour
of v in C. Let L1 be the list of digraphs corresponding to the edges of T [X ∪ v], and
L2 = {D1, . . . , Dn} \ L1. As C is a partial Eulerian list, which is thus obtained from an
Eulerian tour, it is of the form C = vPXPX where PX is the portion of C contained in X,
and PX is the portion of C contained in V(T) − (X∪ v). Note that, since v is a cutvertex
of T , PX and PX are non-empty

Let x be the last element of PX and y be the first element of PX. Then D \ v− xy is
disconnected, and thus D is a directed Hajós join of D ′1 = D[

⋃
G∈L1

V(G)] + xv, and
D ′2 = D[

⋃
G∈L2

V(G)] + vy.

Lemma 4.5.4. Any directed Hajós join of digraphs in ⃗EHTk is in ⃗EHTk.

Proof : Let D, D ′ be two digraphs, uv1 ∈ A(D), v2w ∈ A(D ′) and let H be the directed
Hajós join of D and D ′ with respect to (uv1, v2w). We call v the vertex obtained after
identifying v1 and v2. We want to prove that H ∈ ⃗EHTk. We distinguish four cases.

Case 1: D = D ′ =
↔
Kk+1 or D = D ′ =

↔
W2ℓ+1 for some ℓ ⩾ 1

Let T = ({u, v,w}, {uv, vw}) be the path of length 2 and let L = (u, v,w, u) be a partial
Eulerian list of T . Then it is easy to check that T(D,D ′;L) is the directed Hajós join of
D and D ′, see Figure 8. This proves Case 1.

u

v

w

Figure 8 – The directed Hajós join of two
↔
K4.

From now on, we may assume that there exist a tree T , a partial Eulerian list L =

(x1, . . . , xℓ) of T and n digraphs D1, . . . , Dn such that D = T(D1, . . . , Dn;C) where
C = x1 → · · · → xℓ → x1.
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Case 2: uv1 /∈ A(C)

There is i ∈ [n] such that uv1 ∈ A(Di). By induction, there exists H ′ ∈ ⃗EHTk

such that H ′ is the directed Hajós join of Di and D ′ with respect to (uv1, v2w). Then
H = T(D1, . . . , Di−1, H

′, Di+1, . . . , Dn;C) ∈ ⃗EHTk.

Case 3: uv1 ∈ A(C) and D ′ is a symmetric complete graph or a symmetric odd wheel
In particular, u and v1 are vertices of T . Then H = T ′(D1, . . . , Dn, D

′;C ′) ∈ ⃗EHTk,
where T ′ is obtained from T by adding the vertex w and the edge v1w, and C ′ is obtained
from the partial Eulerian list L ′ obtained from L by adding w between u and v1 (in other
words the peripheral cycle C ′ is obtained from C by deleting uv1 and adding uw and
wv1).

Case 4: uv1 ∈ A(C) and D ′ is neither a symmetric complete graph nor a symmetric
odd wheel
Then D ′ = T ′(D ′1, . . . , D

′
n ′ ;C ′) for some tree T ′, some digraphs D ′1, . . . , D

′
n ′ and a

peripheral cycle C ′ built from a partial Eulerian list L ′ of T .
If v2w /∈ A(C ′), then the result follows from Case 2. So we may assume that v2w ∈

A(C ′).
Since uv1 ∈ A(C) and v2w ∈ A(C ′), we have L = (u, v1, L1, u) and L ′ =

(v2, w, L ′1, v2) for some lists L1 and L ′1.
Let TH be the tree obtained from T and T ′ by identifying v1 and v2 to a new vertex v.

Then H = TH(D1, . . . , Dn, D
′
1, . . . , D

′
n ′ : CH), where CH is obtained from the partial

Eulerian list LH = (v, L1, u,w, L2, v).

The following result is crucial, as it will allow us to use Hajós bijoins given by
Theorem 4.4.1 and preserve the fact of being in ⃗EHTk (this is the main reason why
extended Hajós tree joins are more convenient to use that Hajós tree join combined
with directed Hajós join).

Lemma 4.5.5. Let k ⩾ 3 and let D ∈ ⃗EHTk and uv, vw ∈ A(D) with u ̸= w such
that in all k-dicolourings of D \ {uv, vw}, there is a monochromatic wu-dipath. Then
D = T(D1, . . . , Dn;C) for some tree T and digraphs D1, . . . , Dn and peripheral
cycle C such that uv, vw ∈ E(C).

Proof : Let D ∈ ⃗EHTk and uv, vw ∈ A(D) with u ̸= w such that in all k-dicolourings
of D \ {uv, vw}, there is a monochromatic wu-dipath. Assume that the result holds for
every digraph in ⃗EHTk with strictly less vertices than D.

If D is symmetric, then let φ be a k-dicolouring of D− uv (which must exist for D
is dicritical): w has a colour distinct from the colours of all its neighbours with respect
to φ, and thus φ is a k-dicolouring of D− {uv, vw} in which there is no wu-dipath. So
we may assume that D is not a symmetric complete graph nor a symmetric odd wheel.
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Thus, D = T
(
(D1, [u1, v1]), . . . , (Dn, [ub, vb]);C

)
. Assume for contradiction that

for any choice of D1, u1, v1, . . . Dn, un, vn, C, uv /∈ E(C) or vw /∈ E(C).
Case 1: u ∈ V(Di) \ {ui, vi} for some i ∈ [n], v = vi, and w /∈ V(Di) \ {ui}.
In this case, we will find a k-dicolouring of D \ {uv, vw} with no monochromatic
wu-dipath, thus obtaining a contradiction. Since D is (k+ 1)-dicritical, there is a k-
dicolouring φ of D \ uvi. Observe first that φ(u) = φ(vi), for otherwise we would
get a k-dicolouring of D, a contradiction. Moreover, φ(ui) ̸= φ(vi), for otherwise all
junction vertices receive the same colour and the peripheral cycle is monochromatic

Since φ is, in particular, a k-dicolouring of D \ {uvi, viw}, it contains a monochro-
matic wu-dipath P by hypothesis. So φ(w) = φ(u) ̸= φ(ui) and thus w ̸= ui. If P
goes through vi, the arc viw yields a monochromatic directed cycle, a contradiction. So
P does not contain vi. But since u and w are in two distinct connected components of
D \ {ui, vi}, P contains ui, contradicting the fact that φ(ui) ̸= φ(u).

Case 2: u, v,w ∈ V(Di) for some i, and uv, vw /∈ A(C).
Note that, since uv, vw /∈ A(C), {uv, vw}∩ {uivi, viui} = ∅.

Suppose first that Di = T ′
(
D ′1, . . . , D

′
m;C ′

)
with uv, vw ∈ E(C ′). As |V(C)| ⩾ 3,

C is not a digon, and thus there exists j such that [ui, vi] ∈ D ′j . But then:

D = T ′
(
D ′1, . . . , Dj−1, T

(
D1, . . . , Di−1, D

′
j , Di+1, . . . , Dn;C

)
, Dj+1, . . . , D

′
m;C ′

)
contradicting that for any choice of D1, u1, v1, . . . Dn, un, vn, C, uv /∈ E(C) or

vw /∈ E(C).
Thus by induction, as Di has strictly less vertices than D, there is a k-dicolouring φi

of Di \ {uv, vw} such that there is no monochromatic wu-dipath in Di. Observe that
φi(ui) ̸= φi(vi) since ui and vi are linked by a digon in Di \ {uv, vw}.

Now, let φ be a k-dicolouring of D \ V(Di) ∪ {ui, vi}. If φ(ui) = φ(vi), then all
junction vertices receive this same colour, and C is monochromatic, a contradiction. So
φ(ui) ̸= φ(vi). Now, we may assume without loss of generality that φ(ui) = φi(ui)

and φ(vi) = φi(vi), and obtain a k-dicolouring of D\ {uv, vw} with no monochromatic
wu-dipath. Indeed, a wu-dipath is either included in Di − [ui, vi], or contains both ui

and vi.

Let us now explain why these two cases cover all possible cases. Since uv /∈ E(C) or
vw /∈ E(C), we may assume that at least one vertex of {u, v,w} is not a junction vertex,
for an arc linking two junction vertices is an arc of C.
— If none of {u, v,w} is a junction vertex, we are in case 2.



84 A B RO O K S ’ T H E O R E M F O R L O C A L A R C - C O N N E C T I V I T Y

— If v is a junction vertex and u is not. Then u ∈ V(Di) \ {ui, vi} for some i ∈ [n].
Then either w /∈ V(Di) \ {ui}, and we are in case 1, or w ∈ V(Di) \ui, and we are
in case 2.

— By directional duality, the previous case is the same as the case where v is a junction
vertex and w is not.

— If v is not a junction vertex, then v ∈ V(Di) \ {ui, vi} for some i ∈ [n], and thus
u,w ∈ V(Di), and we are in case 2.

From the previous lemma, we deduce an analogous of Lemma 4.5.4 for bijoins.

Lemma 4.5.6. Let k ⩾ 3. If D is not k-dicolourable and D is the bijoin of two
digraphs D1 ∈ ⃗EHTk and D2 ∈ ⃗EHTk, then D ∈ ⃗EHTk.

Proof : Let ta1, a1w ∈ A(D1), t ̸= w, and t and w are in the same connected com-
ponent of D1 \ a1. Let va2, a2u ∈ A(D2), u ̸= v, and u and v are in the same
connected component of D2 \ a2. Assume that D is obtained from the disjoint union
of D1 − {ta1, a1w} and D2 − {va2, a2u} by identifying a1 and a2 into a new vertex
a, and adding the arcs tu and vw, i.e. D is the bijoin of D1 and D2 with respect to
((t, a1, w), (u, a2, v)).

Suppose first that D1 − {ta1, a1w} admits a k-dicolouring φ1 with no monochro-
matic wt-dipath. Either there is no monochromatic wa1-dipath, or no monochromatic
a1t-dipath. Without loss of generality, suppose there is no monochromatic wa1-dipath.
As D2 is dicritical, D2 − va2 is k-dicolourable, and thus there is a k-dicolouring φ2 of
D2− {va2, a2u} with no monochromatic ua2-dipath. Up to permuting colours, we may
assume that φ1(a1) = φ2(a2). Consider φ : V(D)→ [k] such that

φ(x) =


φ1(a1) if x = a

φ1(x) if x ∈ V(D1)

φ2(x) if x ∈ V(D2)

Since −→χ (D) ⩾ k+ 1, φ contains a monochromatic dicycle C. Since φ1 and φ2 are k-
dicolourings of respectively D1 and D2, C intersects both V(D1) \ a1 and V(D2) \ a2.
Thus it contains tu, or vw or both. If C contains tu but not vw, then C goes through a,
and thus there is a monochromatic ua2-dipath in D2 with respect to φ2, a contradiction
to the choice of φ2. Similarly, we get a contradiction if C contains vw but not tu.
Hence C contains both tu and vw and thus there is a monochromatic wt-dipath in D1,
a contradiction to the choice of φ1.

Hence, all k-dicolourings of D1 − {ta1, a1w} admit a monochromatic wt-dipath.
Similarly, all k-dicolourings of D2 − {va2, a2u} admit a monochromatic uv-dipath.
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By Lemma 4.5.5, D1 = T1(D1
1, . . . , D

1
n;C1) for a tree T1, digraphs D1

1, . . . , D
1
n and

peripheral cycle C1 such that ta1, a1w ∈ A(C1). Similarly, D2 = T2(D2
1, . . . , D

2
m;C2)

for a tree T2, digraphs D2
1, . . . , D

2
m and peripheral cycle C2 such that va2, a2u ∈ A(C2).

Set T to be the tree obtained from T1 and T2 by identifying a1 and a2 to a vertex a. Now,
D = T(D1

1, . . . , D
1
n, D

2
1, . . . , D

2
m;C) where C is obtained from C1 and C2 after deleting

arcs ta1, a1w, va2 and a2w, and adding tu and vw.

For the proof of our main theorem, we need to prove that digraphs in H⃗k are indeed
k-extremal. We know directed Hajós joins preserve k-extremality (Lemma 4.4.3), we
do it now for Hajós tree joins (we prove an if and only if for the purpose of the
recognition algorithm of the next section)

Lemma 4.5.7. Let k ⩾ 2. Let D,D1, . . . , Dn be digraphs such that D is a Hajós
tree join of the Di. Then D is k-extremal if and only if all digraphs D1, . . . , Dn are
k-extremal,

Proof : Let D = T(D1, . . . , Dn;C) where T , C, D1, . . . , Dn are as in Definition 4.1.6.
For each Di, we also denote by uivi the pair of vertices in V(T) ∩ V(Di) such that the
digon [ui, vi] is in A(Di) but was removed in the construction of D.

Let D ′ the digraph obtained from D by putting back all digons [ui, vi] between
vertices of T , and by removing the arcs in the peripheral cycle C. D ′ is a digraph
whose 2-blocks are exactly the Di. One can easily observe that λ(D ′) = maxi λ(Di)

and −→χ (D ′) = maxi
−→χ (Di) . For every arc uv ∈ A(C), let Puv be the unique uv-

dipath that uses only arcs between vertices of T (arcs from the digons that were re-
moved to construct D). It is easy to notice that all Puv are pairwise arc-disjoint (each
cycle uv + Puv corresponds to one face of the planar graph T + C). Therefore one
can go from D ′ to D by applying successive operations where one replaces the uv-
dipath Puv by the arc uv for each arc uv ∈ A(C). By Lemma 4.2.5, we thus obtain
λ(D) ⩽ λ(D ′) = maxi λ(Di).

Assume D is k-dicolourable. Then in any k-dicolouring the vertices of T cannot
all get the same colour (otherwise C would me monochromatic). So there must be a
digraph Di such that the vertices ui and vi get distinct colours. But this provides a
proper k-dicolouring of the corresponding Di. Hence mini

−→χ (Di) ⩽ k.
With the two previous paragraphs, we can already prove that if each Di is k-extremal

then D is k-extremal. Indeed we have −→χ (Di) = k+ 1 = λ(Di) + 1 for every i and
since every digraph satisfies −→χ (D) ⩽ λ(D) + 1, we have −→χ (D) = k+ 1 = λ(D) + 1.
If D admits a cutvertex, then by construction of the Hajós tree, this cutvertex must be a
cutvertex in some Di, which contradicts the fact that Di is biconnected. Now observe
that since every Di is Eulerian (for they are k-extremal), D is also eulerian and is thus
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strong.

Now assume D is k-extremal. First observe that every Di is connected: if not, then ui

and vi must be in the same component, but then any vertex not in this component would
still be disconnected from ui in D. Similarly, we get that every Di is biconnected. Now
because D is Eulerian, every Di is also Eulerian and every Di is strong.

Let us prove that λ(Di) = k for every i. Assume that there exist in Di two vertices
u and v with p arc-disjoint uv-dipaths, then either these dipaths do not use any arc in
the digon [ui, vi], in which case these dipaths are still present in D. Or they do use
one of the arcs, but we can assume they don’t use both, for otherwise we could reroute
the dipaths to obtain a collection of uv-dipaths that do not use any arc in the digon
[ui, vi]. So assume without loss of generality that these paths use uivi. But then we can
replace this arc with a uivi-dipath using only arcs in some other Dj for j ̸= i and some
peripheral arcs of C. Hence we still get p pairwise arc disjoint uv-dipaths. Therefore
λ(D) ⩾ maxi λ(Di), so λ(Di) ⩽ k for every i.

Now let us finish by proving that no Di is k-dicolourable. Observe that since D

is k-extremal it is vertex critical (by Lemma 4.3.1), so any digraph Di − [ui, vi] is k-
dicolourable, and thus every Di is k + 1-dicolourable. We first prove the following
claim.

Claim 4.5.7.1. If T = (V(T), A(T)) is a tree on at least three vertices given with a strict
subset A ′ ⊊ A(T), there exists φ : V(T) → {1, 2, 3} such that the endpoints of edges
in A ′ receive the same colour, the endpoints of edges not in A ′ receive distinct colours,
and the leaves of T do not all receive the same colour.

Proof of Claim : Let uv be an edge not in A ′ and consider the two connected compo-
nents Tu and Tv of T −uv. If some connected component only contains edges in A ′ we
colour it with one single colour. If not we apply induction. Up to permuting the colours
we can do so that u and v receive distinct colours. If we applied induction to either Tu
or Tv, then all leaves do not get the same colour, and if not it means all edges of T except
uv were in A ′, but in that case since the colour of u is distinct from the colour of v, the
leaves in Tu and Tv must get distinct colours. □

Let now A ′ be the set of edges uivi of T such that −→χ (Di) = k+ 1. If all edges are
in A ′, then we have our result, we assume by contradiction this is not the case and apply
the claim above. Observe now that if uivi ∈ A ′, then the digraph Di is k-extremal so we
can apply Lemma 4.3.3 to get a k-diclouring of Di − [ui, vi] in which ui and vi receive
the same colour (that we choose to be the one given by the claim) but such that there
is no monochromatic dipath between ui and vi. And if uivi ̸∈ A ′, then −→χ (Di) = k

and we just take a valid k-dicolouring of Di (it must give distinct colours to ui and vi,
which we can again choose to be the one given by the claim). Note that in all cases, we
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obtain a dicolouring of the vertices of D that is proper on each Di − [ui, vi], such that
there is no monochromatic dipath between any pair of vertices of T , and such that C is
not monochromatic. This is a valid k-dicolouring of D, our final contradiction.

We are now ready to prove our main theorem.
Theorem 4.5.8

Let D be a digraph. The three following statements are equivalent

I ) D is k-extremal

I I ) D ∈ ⃗EHTk

I I I ) D ∈ H⃗k

Proof : We prove the statement by induction on the number of vertices of D.

I⇒ I I Let D be a k-extremal digraph. By Theorem 4.4.1, D is either a directed Hajós
join or a Hajós bijoin of two k-extremal digraphs.
Assume first that D is the directed Hajós join of two digraphs D1 and D2. By
Lemma 4.4.3, both D1 and D2 are k-extremal. Thus by induction D1 and D2

belong to ⃗EHTk and since directed Hajós joins preserve the fact of being in this
class (Lemma 4.5.4), we have that D is in ⃗EHTk.
So we can assume that D is not a directed Hajós join but is a Hajós bijoin of two
k-extremal digraphs D1 and D2. By Lemma 4.4.5, both D1 and D2 are extremal.
So by the induction hypothesis, they both belong to ⃗EHTk. By Lemma 4.5.6, D is
in ⃗EHTk.

I I⇒ I I I By Lemma 4.5.3 a digraph D in ⃗EHTk is either a directed Hajós join or a
Hajós tree. In both cases the digraph Di used for the join are in ⃗EHTk and thus in
H⃗k by induction. Hence D is in H⃗k.

I I I⇒ I This is guaranteed by the fact that both directed Hajós joins and Hajós tree joins
preserve the fact of being k-extremal (Lemmata 4.4.3 and 4.5.7).

4.6 R E C O G N I T I O N A L G O R I T H M

In this section, we give a polynomial time algorithm to decide if a given digraph D

satisfies −→χ (D) = λ(D) + 1. For algorithmic reasons, we need to avoid Hajós trees,
so we need to devise another characterization, using the notion of parallel Hajós joins.
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Definition 4.6.1 (Parallel Hajós join)
Let DB be a digraph, set B = V(DB) and let [a, b] ⊆ A(DB).

Let DAC be a digraph with V(DAC) = A∪C, A∩C = {x}, let t,w ∈ A \ x such
that t,w are in the same connected component of DAC \ x, and let u, v ∈ V(C)

such that u and v are in the same connected component of DAC[C] \ x.
The parallel Hajós join D of DAC and DB with respect to (t, u, v,w, [a, b]) is the
digraph obtained from disjoint copies of DB − [a, b], DAC[A] and DAC[C], by
identifying the copy of x in DAC[A] to a, and the copy of x in DAC[C] to b See
Figure 9.

a

t

w

A \ x∪ a ba B

D

b

u

v

C \ x∪ bx

t

w

A x

u

v

C

DAC

ba

B

DB

Figure 9 – D is a parallel Hajós join of DAC and DB with respect to (t, u, v,w).

Let us say an informal word on the intuition behind parallel Hajós join. Let D =

T(D1, . . . , Dn;C) be a Hajós tree join and assume uivi ∈ E(T) is such that both ui

and vi are interior vertices of T . Then D is the Hajós parallel join of Di and the Hajós
tree join obtained after contracting Di.

As before, we need to prove that this operation preserves extremality.

Lemma 4.6.2. Let k ⩾ 3. A parallel Hajós join of two digraphs DAC and DC is
k-extremal if and only if both DAC and DB are k-extremal.

Proof : Let D be the parallel Hajós join of DAC and DB as in Definition 4.6.1.
Let DA = D[A] + {ta, aw}, DC = D[C] + {vb, bu} and DBC = D[V(B)∪V(C)] +

{va, au}. See Figure 10.
Observe that

— D is a degenerated Hajós bijoin of DA and DBC,
— DBC is a degenerated Hajós bijoin of DB and DC, and
— DAC is a Hajós bijoin of DA and DC.

Suppose first that D is k-extremal.
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DBC

Figure 10 – DA, DB, DC and DBC.

Since D is a Hajós bijoin of DA and DBC, and DBC is a degenerated Hajós bijoin of
DB and DC, we get that DA and DB and DC are k-extremal. So it remains to prove that
DAC is k-extremal.

Since DA and DC are k-extremal, and since DAC is the Hajós bijoin of DA and DC,
by Lemma 4.4.6 we have that DAC is strong, biconnected and λ(DAC) ⩽ k.

Let us now prove that−→χ (DAC) ⩾ k+ 1. Suppose DAC admits a k-dicolouring φAC.
Since DB is k-extremal, DB − [a, b] admits a k-dicolouring φB with φB(a) = φB(b).
Up to permuting colours, we may assume that φB(a) = φAC(x). Let φ : V(D) →
[1, k] be such that φ(y) = φB(y) if y ∈ B and φ(y) = φAC(y) if y ∈ A ∪ C \ x.
As any dicycle of D is either included in DB, or contains vertices that form a dicycle in
D/B = DAC, φ is a k-dicolouring of D, a contradiction.

Thus k+ 1 ⩽ −→χ (DAC) ⩽ λ(D) + 1 ⩽ k+ 1. Hence −→χ (DAC) = λ(DAC) = k+ 1,
which ends the proof that DAC is k-extremal.

Suppose now that DAC and DB are k-extremal and let us prove that D is k-extremal.
Since DAC is k-extremal and is a Hajós bijoin of DA and DC, both DA and DC are

k-extremal by Lemma 4.4.5.
Since DBC is the Hajós bijoin of DB and DC and DB and DC are both k-extremal,

DBC is biconnected, strong, Eulerian and λ(DBC) ⩽ k by Lemma 4.4.6. Thus by
Lemma 4.4.6, D is biconnected, strong, Eulerian and λ(D) ⩽ k.

Let us now prove that −→χ (D) ⩾ k+ 1. Suppose that D admits a k-dicolouring φD.
Then, as D[B] = DB − [a, b], and because DB is k-extremal, φD(a) = φD(b). We
are going to split the proof into two cases, in each case we prove that −→χ (DAD) ⩽ k, a
contradiction.

Case 1: φD(t) ̸= φD(u)

Since φD(a) = φD(b), either φD(t) ̸= φD(a) or φD(u) ̸= φD(b). Suppose with-
out loss of generality that φD(t) ̸= φD(a). Let φC be a k-dicolouring of DC − bu =

D[C] + vb and, up to permuting colours, assume that φC(b) = φD(b)(= φD(a)).
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There is no monochromatic bv-dipath in φC as vb ∈ A(DC − bu). Also, φC(b) =

φC(u) for DC is k-extremal, and thus φC(u) ̸= φD(t).
Now, let φAC : V(DAC)→ [1, k] be such that

φAC(y) =


φD(a) if y = x

φC(y) if y ∈ C \ b

φD(y) if y ∈ A \ a

Observe that, since there is no monochromatic bv-dipath with respect to φC, there is
no monochromatic xv-dipath with respect to φAC. Since any dicycle of DAC is either
included in A ∪ x or in C ∪ x, or goes through tu, or contains an xv-dipath, φAC is a
k-dicolouring of DAC, a contradiction.

Case 2: φD(t) = φD(u).
There is not both a monochromatic wt-dipath and a monochromatic uv-dipath with

respect to φD. Without loss of generality, suppose there is no monochromatic uv-dipath.
Then, either there is no monochromatic ub-dipath or no monochromatic bv-dipath. Sup-
pose without loss of generality that there is no monochromatic bv-dipath. Since DA is
k-extremal, DA − aw admits a k-dicolouring φA. Up to permuting colours, we may
assume that φA(a) = φD(a). Note that ta ∈ A(DA − aw), and thus there is no
monochromatic at-dipath in φA(a).

Let φAC : V(DAC)→ [1, k] be such that

φAC(y) =


φD(a) if y = x

φA(y) if y ∈ A \ a

φ(y) if y ∈ A \ a

Observe that:
— since there is no monochromatic at-dipath with respect to φA, there is no monochro-

matic xt-dipath with respect to φAD,
— since there is no monochromatic uv-dipath with respect to φD, there is no

monochromatic uv-dipath with respect to φAC, and
— since there is no monochromatic bv-dipath with respect to φD, there is no

monochromatic xv-dipath with respect to φAD.
Finally, observe that dicycle of DAC is either included in DAC[A∪ x] or DAC[C∪ x],

or contains a uv-dipath, or a xv-dipath or a ww-dipath. Hence, φAC is a k-dicolouring
of DAC, a contradiction.

Thus D is k-extremal.
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The algorithm will use the following third decomposition theorem for H⃗k.
Theorem 4.6.3

Let k ⩾ 3. If D is k-extremal, then one of the following holds:
— D is a symmetric odd wheel or
— D =

←→
K k, or

— D is a directed Hajós join of two digraphs D1 and D2, or
— D is a parallel Hajós join of two digraphs D1 and D2, or
— D is a Hajós star join of n digraphs D1, . . . Dn, or

x v1x

v2

x

v3

D

x v1

x

v2

x

v3

Figure 11 – D is a Hajós star join of D1, D2 and D3.

Proof : Suppose D ̸=
←→
K k and D is not a symmetric odd wheel. Since it is one of the

possible outputs of this theorem, we can assume that D is not a directed Hajós join.
Thus by our main Theorem D is a Hajós tree join: there exists a tree T with edges
{u1v1, . . . , unvn}, some digraphs D1, . . . , Dn with [ui, vi] ⊆ A(Di) for i = 1, . . . , n

such that D = T(D1, . . . , Dn;C), where C is a directed cycle going through the leaves
of T .

If T is a star, then D is a Hajós star join of D1, . . . , Dn and we are done.

Hence, there is ui, vi ∈ E(T) such that ui and vi are both interior vertices of T . Let
Tui

and Tvi be the two connected component of T −uivi containing respectively ui and
vi. By definition of a partial Eulerian list, the dicycle C is the concatenation of two
vertex disjoint dipaths Pui

and Pvi such that V(Pui
) are the leaves of T contained in
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Tui
and V(Pvi) are the leaves of T contained in Tvi . There is xui

, ya ∈ V(Pui
) and

xvi , yvi ∈ V(Pvi) such that xui
yvi , xviyui

∈ A(C).
Let D ′ be the digraph obtained from D by deleting V(Di) \ {ui, vi} and identifying

ui and vi to a new vertex x. Then D is the Hajós parallel join of D ′ and Dab with
respect to (xui

, yvi , xvi , yui
). To see this, look at Definition 4.6.1 and observe that:

— Di plays the role of DB,
— D ′ plays the role of DAC,
— A =

⋃
ujvj∈Tui

V(Dj) and C = ∪ujvj∈TviV(Dj),
— xui

, yvi , xvi , yui
plays the role of respectively t, u, v,w

Finally, observe that xui
, yui

are in the same connected component of D[A] \ x because
of Pui

and xvi , yvi are in the same connected component of D[C] \ x because of Pvi .

Theorem 4.6.4
Let k ⩾ 3. There is an algorithm that decides if a given digraph D is k-extremal in
time O(n10).

Proof : Our algorithm is based on Theorem 4.6.3 together with Lemmata 4.4.3, 4.6.2
and 4.5.7

Let D be a digraph on n vertices. Checking if D is strong and biconnected can be
done in time O(n2). It takes time O(n2) to check if D =

←→
K k or D is a symmetric

odd wheel. If D =
←→
K k, then our algorithm outputs that D is k-extremal. We may now

assume that D is strong, biconnected and distinct from
↔
Kk and symmetric odd wheels.

Claim 4.6.4.1. We can decide in time O(n5) that either D is not the directed Hajós
join of two digraphs, or D is the directed Hajós join of two digraphs D1 and D2 and
compute D1 and D2.

Proof of Claim : Checking if D is a directed Hajós join of two digraphs D1 and D2 can
be done by testing for all triples of vertices (u, v,w) if uw ∈ A(D), D \ v− uw is not
connected and u and w are in distinct components of D \ v−uw. If (u, v,w) is such a
triple, Let Ru (resp. Rw) be the connected component of D \ v−uw containing u (resp.
containing w).Then D is the directed Hajós join of D[Ru ∪ v] +uv and D[Rw ∪ v] + vw.
This can be done in time O(n5). □

Claim 4.6.4.2. We can decide in time O(n8) that either D is not the parallel Hajós join
of two digraphs, or D is the parallel Hajós join of two digraphs D1 and D2 and compute
D1 and D2.

Proof of Claim : Checking if D is a directed Hajós join of two digraphs D1 and D2 can
be done by testing for all 6-tuples of vertices (t, u, v,w, a, b) if tu, vw ∈ A(D), D \



4.6 R E C O G N I T I O N A L G O R I T H M 93

{a, b}− {tu, vw} has a connected component A containing both t and u, a connected
component C containing both u and v, and some other connected components union
of which we name B. Then D is the parallel Hajós join of the digraphs obtained from
D[A∪a] and D[C∪b] by deleting tu, vw, identifying a and b into a new vertex x, and
adding arcs tx, xw, vx, xu, and D[B] + [a, b]. This can be done in time O(n8).

□

Claim 4.6.4.3. We can decide in time O(n5) that either D is not the Hajós star join of
some digraphs, or D is a Hajós star join of some digraphs D1, . . . , Dℓ and compute
D1, . . . , Dℓ.

Proof of Claim : Observe that D is a Hajós star join of ℓ digraphs if and only if it has
ℓ+ 1 vertices x, v1, . . . , vℓ such that C = v1 → . . . → vℓ → v1 and D \ x−A(C) has
exactly ℓ connected component R1, . . . , Rℓ such that vi ∈ Ri for i = 1, . . . , ℓ. Indeed, if
it is the case then D = T(D1, . . . , Dℓ, C) where T is the tree with edges {xv1, . . . , xvℓ},
and Di = D[Ri ∪ x] + [x, vi], and the "only if" part is straightforward by definition of a
Hajós star join.

Hence, given ℓ+ 1 vertices y, p1, . . . , pℓ, we can decide if they can play the role of
respectively x, v1, . . . , vℓ in time O(n2). But this is not enough to conclude because ℓ

can be large.
Anyway, we are going to show that given a triple of vertices (y, pℓ, p1), we can guess

in time O(n2) if there exists p2, . . . , pℓ−1 such that y, p1, . . . , pℓ can play the role of
respectively x, v1, . . . , vℓ. In this case, we say that (y, pℓ, p1) is a good guess.

Let (y, pℓ, p1) be a triple of vertices of D such that pℓp1 ∈ A(G). Compute the list
of bridges B of D \ y− pℓp1. This can be done in O(n2) time. Observe that if B does
not contain a p1pℓ-dipath, then our guess is wrong. Assume otherwise, and observe that
B induces a forest, so it has a unique p1pℓ-dipath, say P = p1 → p2 → . . .→ pℓ. Now,
(y, pℓ, p1) is a good guess if and only p2, p3, . . . , pℓ−1 can play the role of respectively
v2, . . . , vℓ−1, so we are done.

Altogether, it takes O(n2) to decide if a triple of vertices is a good guess, so the total
time is O(n5).

□

Thus in time O(n8), we can check whether D is a directed Hajós join or a parallel
Hajós join of two digraphs D1 and D2 and compute D1 and D2, or a Hajós star join
of ℓ digraphs D1, . . . Dℓ and compute D1, . . . , Dℓ. If all these checks fail, then by
Theorem 4.6.3 D is not k-extremal.

If D is a directed Hajós join of two digraphs D1 and D2, we can then recursively
check whether D1 and D2 are k-extremal, and our algorithm can return that D is k-
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extremal if and only if they both are k-extremal, by Lemma 4.4.3. We do the same if D
is a parallel join (Lemma 4.6.2) or a star Hajós join (Lemma 4.5.7).

Let us now prove that our algorithm has time complexity O(n10). First, note that in
each case, in time O(n8), either we conclude that D is not k-extremal, or we make ℓ ⩾ 2

recursive calls on digraphs (Di)i∈[1,ℓ]. We have that
∑

i∈[1,ℓ] |V(Di)|− 1 ⩽ |V(D)|− 1

and for i ∈ [1, ℓ], that 2 ⩽ |V(Di)| < |V(D)|. Let us consider T , the rooted tree of
recursive calls of our algorithm, with each node v labelled with the digraph Dv of the
corresponding recursive call. Let depth be the function which associates to a node its
depth in T . Then, ∑

v|depth(v)=0

|V(Dv)|− 1 = V(D) − 1 ⩽ n

and, for i ⩾ 1, ∑
v|depth(v)⩽i

|V(Dv)|− 1 ⩽
∑

v|depth(v)=i−1

|V(Dv)|− 1.

Thus we can recursively prove for any k ∈ N that
∑

v|depth(v)⩽k |V(Dv)|− 1 ⩽ n. As
every Dv has |V(Dv)| ⩾ 2, this implies that there are at most n calls at any depth. But,
since T has depth at most n, this means there are at most n2 recursive calls. Each of these
recursive calls takes time at most O(n8), and thus our algorithm has time complexity
O(n10).

4.7 T H E H Y P E R G R A P H C A S E

As mentioned in the introduction, Theorem 4.1.2 has already been generalized to
hypergraph with chromatic number at least 4 by Schweser, Stiebitz and Toft [77].
Their result is closely related to ours as we explain below.

Let H be a hypergraph. Its chromatic number χ(H) is the least integer k such that
the vertices of H can be coloured in such a way that no hyperedge is monochromatic.
A uv-hyperpath in H is a sequence (u1, e1, u2, e2, . . . , eq−1, uq) of distinct vertices
u1, u2, . . . , uq of H and distinct hyperedges e1, e2, . . . , eq−1 of H such that u =

u1, v = uq and {ui, ui+1} ⊆ ei for i ∈ {1, 2, . . . , q − 1}. The local connectivity
λ(u, v) of two vertices u and v is the maximum number of hyperedge-disjoint uv-
hyperpaths linking u and v and the maximum local connectivity of H is λ(H) =

maxu ̸=vλ(u, v).
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Let H1 and H2 be two hypergraphs and, for i = 1, 2, let ei ∈ E(Hi) and vi ∈ ei.
The Hajós hyperjoin of H1 and H2 with respect to ((e1, v1), (e2, v2)) is the hy-
pergraph H obtained from H1 and H2 by identifying v1 and v2 into a new vertex
v, deleting e1 and e2 and adding a new edge e where e = e1 ∪ e2 \ {v1, v2} or
e = e1 ∪ e2 ∪ {v} \ {v1, v2}.

Let H3 be the smallest class of hypergraphs that contains all odd wheels and is
closed under taking Hajós hyperjoins, and for k ⩾ 4, Hk is the smallest class of
hypergraphs that contains Kk+1 and is closed under taking Hajós hyperjoins.
Theorem 4.7.1 ([77])

Let H be a hypergraph with χ(H) = k+ 1 ⩾ 4. Then χ(H) = λ(H) + 1 if and
only if a block of H is in Hk.

Given a digraph D, let HD be the hypergraph with vertex set V(D), and e ⊆ V(D)

is a hyperedge of HD if and only if it induces a directed cycle in D. We clearly have
that −→χ (D) = χ(HD). Hence, one could suspect that our result is actually implied by
the result of Schweser, Stiebitz and Toft. But this is not the case because a dipath of
D does not need to translate into a hyperpath of HD, and thus the maximum local arc-
connectivity of D does not need to be equal to the maximum local edge-connectivity
of HD. Actually, we can prove that the class of extremal digraphs strictly contains
the class of extremal hypergraphs in the following sense:

Lemma 4.7.2. Let k ⩾ 3.
(i) For every hypergraph H ∈ Hk, there exists a digraph D ∈ H⃗k such that

HD = H.
(ii) There exist (an infinite family of) digraphs D such that D ∈ H⃗k and HD /∈ Hk.

Let us first prove an important property of hypergraphs in Hk.
Property 4.7.3

Let H ∈ Hk. Then for every e, e ′ ∈ E(H), |e∩ e ′| ⩽ 1.

Proof : The result holds for complete graphs and odd wheels, and it is easy to see that if it
holds for two hypergraphs H1 and H2, then it also holds for any Hajós hyperjoin of H1

and H2.

Proof of Lemma 4.7.2 : Using directed Hajós join, it is not hard to construct a digraph
D ∈ H⃗k that has two induced directed cycles with two common vertices, see Figure 12
for an example. By Property 4.7.3, HD /∈ Hk. This proves the second part of the lemma.
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Let us now prove the first part of Lemma. Let H ∈ Hk. If H = Kk+1, then Kk+1 =

H↔
Kk+1

and since
↔
Kk+1 ∈ H⃗k we are done.

Assume now that H is the Hajós hyperjoin of two hypergraphs H1, H2 ∈ Hk with
respect to ((e1, v1), (e2, u1)). By induction, for i = 1, 2, there is Di ∈ H⃗k such that
HDi

= Hi.
Let C1 = v1 → v2 → . . . → vℓ1 → v1 be the induced directed cycle of D1

corresponding to e1, and C2 = u1 → u2 → . . . → uℓ2 → u1 the induced directed
cycle of D2 corresponding to e2. Let D be the digraph obtained from DH1

and DH2
by

identifying v1 and u1 into a new vertex v, and:
— if the new hyperedge e of H is e1 ∪ e2 ∪ v \ {v1, u1}, then delete the arcs vℓ1v, vu2

from D and add the arc vℓ1u2.
— if the new hyperedge e of H is e1 ∪ e2 \ {v1, u1}, then delete the arcs vv2, vℓ1v, vu2,

uℓ2v and add the arcs uℓ2v2 and vℓ1u2.
We need to prove that D ∈ H⃗k and HD = D. We treat the two cases one after the

other.

Assume we are in the first case. Then D is the directed Hajós join of D1 and D2 with
respect to (vℓ1v1, u1u2), and thus D is k-extremal by Lemma 4.4.3 and thus in H⃗k by
our Theorem 4.1.8.

Let us now prove that HD = H. Let C = v → v2 → . . . → vℓ1 → u2 → . . . →
uℓ2 → v and observe it is an induced directed cycle of D. We first prove that E(H) ⊆
E(HD). The newly created edge e of H is in E(HD) because of C. Let f ∈ E(H) \ {e}.
By Property 4.7.3, f does not contain {v, vℓ1} nor {v, u2}. Thus f corresponds to an
induced directed cycle of D1 or D2 that still exists in D, so f ∈ E(HD).

Let us now prove that E(HD) ⊆ E(H). Observe that vℓ1v is not a chord of a directed
cycle of D1 (because HD1

∈ Hk and property 4.7.3), so deleting it does not create a new
induced directed cycle. The same holds for vu2. Hence, proving that E(HD) ⊆ E(H)

boils down to proving that the only induced directed cycle going through vℓ1u2 is C.
Assume it is not the case, and let C ′ be such an induced directed cycle. Then D2 contains
an induced directed cycle C ′2 with arcs A(C ′)∩A(D2) and u1u2. Then C2 and C ′2 are
two induced directed cycles of D2 with u1 and u2 in common. Since HD1

= D1 ∈ Hk,
it contradicts Property 4.7.3.

Assume we are in the second case.
Let us first prove that HD = H. The proof is very similar to that of the first case. Let

C = v2 → . . . → vℓ1 → u2 → . . . → uℓ2 → v2 and observe it is an induced directed
cycle of D. We first prove that E(H) ⊆ E(HD). The newly created edge e of H is in
E(HD) because of C. Let f ∈ E(H) \ {e}. By Property 4.7.3, f does not contain {v, v2},
nor {v, vℓ1}, nor {v, u2}, nor {v, uℓ2}. Thus f corresponds to an induced directed cycle of
D1 or D2 that still exist in D.
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Let us now prove that E(HD) ⊆ E(H). Similarly to the previous case, the arc v1v2
(vℓ1v) is not a chord of a directed cycle of D1, so deleting it does not create a new
induced directed cycle. The same holds for vu2 and uℓ2v. So proving that E(HD) ⊆
E(H) boils down to proving that each of uℓ2v2 and vℓ1u2 are not contained in any other
induced directed cycle than C in D. Assume for contradiction that C ′ is an induced
directed cycle of D containing uℓ2v2 (the proof for vℓ1u2 is similar). Than D2 contains
an induced directed cycle C ′2 with arcs included in {A(C ′) ∩A(D2)} ∪ {u1u2, uℓ2u1}}

that has at least two vertices in {u1, u2, uℓ2} in common with C2. A contradiction to the
fact that HD2

∈ Hk and Property 4.7.3.

Let us now prove that D ∈ H⃗k. Observe that D is the bijoin of D1 and D2 with
respect to ((vℓ1 , v1, v2), (uℓ2 , u1, u2)). Moreover, since HD = H, −→χ (D) = χ(H) =

k+ 1. Hence, by Lemma 4.4.6, D is k-extremal and thus in H⃗k thus in H⃗k by Theo-
rem 4.1.8.

c b

ad

Figure 12 – A 3-extremal digraph. The two induced dicycles a → b → c → a and a →
d → c → a share two vertices. Hence its hypergraph of induced dicycles is not
3-extremal.
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4.8 2 - E X T R E M A L D I G R A P H S

Similarly to the hypergraph case, the case where k = 2 seems to be more difficult.
↔
K3 is of course 2-extremal. A directed wheel is a digraph made of a directed cycle
plus a vertex linked by a digon to every vertex of the directed cycle. Directed wheels
are 2-extremal. We now give a way to generalize directed wheels to get a simple
family of 2-extremal digraphs that cannot be obtained (at least for some of them)

from
↔
K3 and directed wheels by applying Hajós directed join or Hajós tree join.

Definition 4.8.1 (Generalized directed wheels)

A digraph D is a generalized directed wheel if it can be obtained from a symmet-
ric rooted tree T on at least 3 vertices, in which each path from the root to leaf has
the same parity (either all even, or all odd) plus a directed cycle x1 → x2 → . . .→
xℓ → x1 where (x1, . . . , xℓ) is a circular ordering of the leaves of T following the
natural ordering of an embedding of T .

See Figure 13 for an example of a generalized wheel. Observe that
↔
K3 and directed

wheels are generalized wheels. Moreover, it is routine work to check that generalized
wheels are 2-extremal. Let H2 be the smallest class containing generalized wheels
and stable by Hajós tree join and directed Hajós join.
Conjecture 4.8.2

A digraph D is 2-extremal if and only if D ∈ H2.
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h j

D

Figure 13 – A 2-extremal digraph.





Part III

T OWA R D S A D I R E C T E D A NA L O G U E O F
G YÁ R FÁ S - S U M N E R C O N J E C T U R E

In which we try to characterize digraphs which necessarily appear inside
digraphs of large dichromatic number.





5
T OWA R D S A D I R E C T E D A NA L O G U E O F
G YÁ R FÁ S - S U M N E R C O N J E C T U R E

This chapter is built upon a work of Pierre Aboulker,
Pierre Charbit and Reza Naserasr, published in [10].

In this chapter, we present a conjecture regarding the induced subdigraphs of di-
graphs with a large dichromatic number.

5.1 I N T RO D U C T I O N

Even though it has been widely studied, there are still a lot of open questions re-
garding the chromatic number. One of them is the following: which graphs must
necessarily appear as induced subgraphs of graphs of large enough chromatic num-
ber? This can also be formulated as follows: which classes of graphs F are such
that the class of graphs not containing any member of F as induced subgraphs has a
bounded chromatic number?

As complete graphs have an unbounded chromatic number, and as the only induced
subgraphs of complete graphs are complete graphs, such a class F must contain a
complete graph. On the other hand, Erdős proved in [42] that there exist graphs
of arbitrarily large girth and arbitrarily large chromatic number: this implies that if
F is finite, it must contain a forest. Gyárfás and Sumner have conjectured that the
reciprocal holds:
Conjecture 5.1.1

Given any forest F and complete graph K, the class of graphs which contain neither
F nor K as induced subgraphs has a bounded chromatic number.

This conjecture is still largely open.

103
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There is also a fruitful discussion to be had when F is not restricted to be finite.
Let k, ℓ be two integers. Scott and Seymour proved in [79] that if graphs in F do
not contain Kk nor any odd holes, then F has a finite chromatic number. Along with
Chudnovsky, they also proved in [33] that forbidding Kk and all holes of size at least
ℓ also bounds the chromatic number. Chudnovsky, Scott, Seymour and Spirkl then
unified these two results, by proving that forbidding Kk and all odd holes of length
greater ℓ was sufficient to bound the chromatic number of a class of graphs.

Scott and Seymour then generalized these results with the following one in [81]:
Theorem 5.1.2

Let n, r ⩾ 0 and q ⩾ 1, the class of graphs not containing Kn nor any hole of
length kq+ r for any integer k has bounded chromatic number.

In both finite and infinite cases, Scott and Seymour have compiled a list of results
in their survey [80].

In the directed setting, we consider the corresponding problem for dichromatic
number: which sets of digraphs D are such that −→χ (Forbind(D)) is finite? Recall
that such a set of digraphs is said to be heroic.

In the infinite case, only a few results are known. Notably, Carbonero, Hompe,
Moore and Spirkl have shown in [30] that for any integer ℓ, the class of digraphs in
which all induced directed cycles have length ℓ does not have a finite dichromatic
number. In the rest of this chapter, we restrict ourselves to finite sets of digraphs.

5.2 T H E S P E C I A L C A S E O F T O U R N A M E N T S

The first step is to look at tournaments and try to characterize heroes, i.e. digraphs
that appear in tournaments of large enough dichromatic number. As tournaments are
exactly digraphs in Forbind(K2,

←→
K 2), this is equivalent to finding digraphs H such

that −→χ (Forbind(K2,
←→
K 2, H)) is finite. Clearly, there exist heroes: C⃗3 is a hero since

in a tournament induced dicycles are isomorphic to C⃗3 and, by Ramsey’s Theorem,
transitive tournaments must be heroes. But are all tournaments heroes? To disprove
this, we must exhibit a construction of tournaments with an arbitrarily large dichro-
matic number.

Let (Di)1⩽i⩽ℓ be ℓ digraphs. We denote as C⃗ℓ(D1, . . . , Dℓ) the digraph obtained
from their disjoint union by adding all arcs from Di to Di+1, for 1 ⩽ i ⩽ ℓ− 1, and
all arcs from Dℓ to D1.
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The following folklore result is straightforward by induction:
Theorem 5.2.1

Let ℓ ⩾ 3. Define F1 = TT1 and, for k ⩾ 2, let Fk = C⃗ℓ(1, Fk−1, . . . , Fk−1). Then,
for any integer k, −→χ (Fk) = k.

Proof : Let us first prove that −→χ (Fk) ⩾ k for any k ⩾ 1. Let us prove this by induction
on k. If k = 1, the statement is clear, thus let Fk = C⃗ℓ(1, Fk−1, . . . , Fk−1) and suppose
Fk admits a (k− 1)-dicolouring φ. Let V1, . . . , Vℓ−1 be the ℓ− 1 subsets of vertices
inducing copies of Fk−1 in Fk, and let v be the remaining vertex. For 1 ⩽ i ⩽ ℓ− 1,
−→χ (Vi) = k− 1, and there must be at least one vertex vi ∈ Vi with φ(vi) = φ(v). But
then v⇒ v1 ⇒ . . . vℓ ⇒ v is a monochromatic directed cycle, a contradiction.

A k-dicolouring of Fk can be obtained recursively by considering any (k − 1)-
dicolouring on each copy of Vi, and putting a k-th colour on v.

This proves in particular that there exist tournaments of arbitrarily large dichro-
matic numbers.

Let D1 and D2 be two digraphs. We denote by D1 ⇒ D2 the digraph obtained
from the disjoint union of D1 and D2 by adding all arcs from D1 to D2. We can now
get to the main result of this section: Berger, Choromanski, Chudnovsky, Fox, Loebl,
Scott, Seymour and Thomassé have managed to characterize heroes in tournaments
in [25].
Theorem 5.2.2 ([25])

A digraph is a hero if and only if it can be constructed from the following inductive
rules:

— TT1 is a hero
— If H1 and H2 are heroes, so is H1 ⇒ H2

— For every k ∈N, if H is a hero, so are C⃗3(1, k,H) and C⃗3(1,H, k)

Note that all classes of digraphs we will study in this part will contain all tourna-
ments as induced subdigraphs: thus all heroes in these classes must also be heroes in
tournaments.

5.3 T H E M A I N C O N J E C T U R E

Let D be a (minimal for inclusion) finite heroic class of digraphs. We can prove
that D must contain the following digraphs:



106 T O WA R D S A D I R E C T E D A N A L O G U E O F G YÁ R F Á S - S U M N E R C O N J E C T U R E

— As symmetric complete graphs have an unbounded dichromatic number and
as induced subdigraphs of symmetric complete graphs are symmetric complete
graphs, D must contain a symmetric complete graph.

— The same reasoning for tournaments yields that D must contain a tournament.
Note that if it contains only one such tournament, it must be a hero.

— If D does not contain any symmetric forest, then let k = max{|V(D)| | D ∈
D}+1. Then {

←→
G | G has girth at least k+ 1} has unbounded dichromatic num-

ber, yet is included in Forbind(D). Thus D must contain a symmetric forest.
— Harutyunyan and Mohar proved in [50] that there exist digraphs of arbitrarily

large girth and arbitrarily large dichromatic numbers. Thus, a proof similar to
the previous case yields that D must contain an oriented forest.

If |D| = 1, then D must contain a digraph that is both a symmetric forest and an
oriented forest, which is only possible if D = {TT1}. If |D| = 2, then D must contain
an oriented forest that is also a tournament, and a symmetric forest that is also a
symmetric complete graph, which is only possible if D = {TT2,

←→
K 2}. If |D| = 3, a

similar analysis yields that D must be of one of the following forms:
— {TT2,

←→
K k,
←→
F } with F a forest and k an integer

— {Kα,
←→
K k, H} with α, k ⩾ 2 and H a hero

— {
←→
K 2, H,

−→
F } with H a hero and

−→
F an oriented forest

Note that the first case corresponds to the Gyárfás-Sumner conjecture, and thus is
largely open. The second case is fully solved, using Ramsey’s theory.

Lemma 5.3.1 ([10]). If D = {Kα,
←→
K k, H} with α, k ⩾ 2 and H a hero, then D is

heroic if and only if H is a transitive tournament.

While the third case remains largely open, Aboulker, Charbit and Naserasr proved
that the following constraint on H and

−→
F holds.

Lemma 5.3.2 ([10]). If {
←→
K 2, H,

−→
F }, with H a hero and

−→
F an oriented forest, is

heroic, then H is a transitive tournament or
−→
F is an oriented star.

Their proof relies on showing that the class of digraphs defined by H1 = TT1 and
Hk = C⃗4(1,Hk−1, Hk−1, Hk−1) for k ⩾ 2 has an unbounded dichromatic number
(by Lemma 5.2.1), yet does not contain any induced copy of

−→
C3 nor of any oriented

path on 4 vertices, thus proving that either H is a transitive tournament, or that
−→
F is

an oriented star. Aboulker, Charbit and Naserasr thus made the following conjecture:
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Conjecture 5.3.3 ([10])
Minimal heroic sets of size 3 are exactly sets of the form:

1. {
←→
K k,
←→
F , TT2} (equivalent to Gyarfas-Sumner conjecture)

2. {
←→
K k, Kα, TTℓ} (proved by Lemma 5.3.1)

3. {
←→
K 2,
−→
F , TTℓ}

4. {
←→
K 2,
−→
F S, H}

where α, k, ℓ ∈ N,
←→
F is a symmetric forest,

−→
F is an oriented forest,

−→
FS is an

oriented forest of stars and H is a hero.

We disproved the last point in [4] by proving that {
←→
K 2, K1 + TT2, C⃗3(1, 2, 2)} is

not heroic. Note that the remaining unsolved cases all concern oriented graphs. Thus
in the rest of this work, for any class of digraphs D, the notation Forbind(D) will
now be defined to mean Forbind(D ∪ {

←→
K 2}), that is Forbind(D) will mean the set

of oriented graphs not containing any digraph in D as an induced subdigraph.

5.4 S O LV E D C A S E S A N D P E R S P E C T I V E S

For oriented graphs, the two open cases are concerned with the dichromatic number
when forbidding as an induced subdigraph either a hero and an oriented forest of stars,
or a transitive tournament and an oriented forest. As transitive tournaments are heroes
and stars are trees, a preliminary question is to study the behaviour of oriented graphs
with no induced copy of a fixed transitive tournament and no induced copy of a fixed
forest of stars. This was solved by Chudnovsky, Scott and Seymour:
Theorem 5.4.1 ([35])

Let
−→
S be a forest of star, and k be an integer. −→χ (Forbind(

←→
K2 ,
−→
S , TTk)) is finite.

Note that they proved that this result holds even when only considering colourings
of the underlying graph.

5.4.1 Forbidding an oriented forest and a transitive tournament

Conjecture 5.4.2 ([10])

Let
−→
F be an oriented forest and k an integer. −→χ (Forbind(

−→
F , TTk)) is finite.
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Note that, since any transitive tournament T is an orientation of a complete graph,
and is a subdigraph of any orientation of a complete graph on 2V(T) vertices, the above
conjecture is equivalent to the following conjecture:
Conjecture 5.4.3 ([10])

Let
−→
T be an oriented tree and k be an integer. The class of oriented graphs with

no induced copy of
−→
T and clique number at most k has a bounded dichromatic

number.

As this problem is largely open, an interesting first step could be to restrict
−→
T to

be an orientation of a path:
Conjecture 5.4.4 ([10])

Let
−→
P be an oriented path, and k be an integer. The class of oriented graphs with

no induced copy of
−→
P and clique number at most k has a bounded dichromatic

number.

In [10], Aboulker, Charbit and Naserasr proved it when
−→
F is any orientation of a

path on 3 vertices. In [36], Cook, Masarík, Pilipczuk, Reinald and Souza proved it
for any orientation of a path on 4 vertices. For larger paths, the only known result
is the following one: if F =

−→
P6, we proved with Pierre Aboulker, Pierre Charbit and

Stéphan Thomassé that the conjecture holds for k = 3. This is the object of Chapter 9.
Outside of oriented stars and paths, the conjecture is still completely open.

5.4.2 Forbidding an oriented forest of stars and a hero

Conjecture 5.4.5 ([10])

Let
−→
S be an oriented forest of stars and H a hero. −→χ (Forbind(

−→
S ,H)) is finite.

If
−→
S = S+2 and H = 1 ⇒

−→
C3, we proved that −→χ (Forbind(

−→
S ,H)), with Pierre

Aboulker and Pierre Charbit. This is the object of Chapter 8. Note that this was
independently proven by Steiner in [87]. If

−→
S =

−→
P3, we proved with Pierre Aboulker

and Pierre Charbit that for any hero H,−→χ (Forbind(
−→
S ,H)) is finite. This is the object

of Chapter 6.

With Pierre Aboulker and Pierre Charbit, we have characterized heroes
Forbind(K1 + TT2), which happens to be the class of oriented multipartite



5.4 S O LV E D C A S E S A N D P E R S P E C T I V E S 109

complete graphs, and proved that C⃗3(1, 2, 2) is not a hero in this class, thus
disproving this conjecture. This is the object of chapter 7. Consequently, we also
disproved this conjecture for any oriented forest of stars

−→
S containing K1 + TT2,

that is for any disconnected oriented forest of stars with at least one arc, as
Forbind(K1 + TT2, C⃗3(1, 2, 2)) ⊆ Forbind(K1 + TT2, C⃗3(1, 2, 2)). Conjecture 5.4.5
then becomes:
Conjecture 5.4.6

Let
−→
S be a disconnected oriented forest of stars with at least one arc and H a hero

in oriented multipartite complete graphs. −→χ (Forbind(
−→
S ,H)) is finite.

In the same paper, we also prove the following statement:
Theorem 5.4.7 ([4])

Let t ∈ N, H1 and H2 two heroes in Forbind(K1 + kTT2). Then H1 ⇒ H2 is a
hero in Forbind(K1 + kTT2).

Thus, to completely characterize heroes in Forbind(K1 + kTT2), we only need to
prove the following:
Conjecture 5.4.8

Let t ∈ N and H a hero in Forbind(K1 + kTT2). Then C⃗3(1, 1,H) is a hero in
Forbind(K1 + kTT2).

The only disconnected oriented forests of stars not covered by conjecture 5.4.6 are
the stable digraphs Kk with k an integer. Harutyunyan, Le, Newman and Thomassé
have solved this case [48], proving that for any hero in tournaments H and any integer
k, −→χ (Forbind(Kk, H)) is finite.

Among the remaining open cases, the following two conjectures are particularly
interesting, in that if they both turn out to be false, Conjecture 5.4.5 would be com-
pletely settled whenever F is disconnected:
Conjecture 5.4.9

The class of digraphs with no induced copy of C⃗3 nor TT2+K1+K1 has a bounded
dichromatic number.

Conjecture 5.4.10

The class of digraphs with no induced copy of C⃗3 nor TT2 + TT2 has a bounded
dichromatic number.
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H E RO E S I N Q UA S I - T R A N S I T I V E O R I E N T E D G R A P H S

This chapter is built upon a joint
work with Pierre Aboulker and
Pierre Charbit, published in [4].

We give an easy proof that all heroes in tournaments are heroes in Forbind(
−→
P 3).

6.1 I N T RO D U C T I O N

We say that a digraph G is quasi-transitive if for every triple of vertices x, y, z,
if xy, yz ∈ A(G), then xz ∈ A(G) or zx ∈ A(G) and observe that the class of
quasi-transitive digraphs is precisely Forbind(

−→
P 3).

Given two digraphs G1 and H1 with disjoint vertex sets, a vertex u ∈ G1, and a
digraph G, we say that G is obtained by substituting H1 for u in G1, provided that
the following hold:

— V(G) = (V(G1) \ u)∪ V(H1),
— G[V(G1) \ u] = G1 \ u,
— G[V(H1)] = H1

— for all v ∈ V(G1) \ u if v sees (resp. is seen by, resp. is non-adjacent to) u
in G1, then v sees (resp. is seen by, resp. is non-adjacent with) every vertex in
V(G2) in G.

Let T be the class of tournaments and A the class of acyclic digraphs. Let (A∪T)∗ be
the closure of A∪ T under taking substitution, that is to say digraphs in (A∪ T)∗ are
the digraphs obtained from a vertex by repeatedly substituting vertices by digraphs in
A ∪ T. A classic result of Bang-Jensen and Huang [23] (see also Proposition 8.3.5
in [22]), implies that quasi-transitive digraphs are all in (A∪ T)∗.
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6.2 M A I N R E S U LT

We can now prove the main result of this chapter.
Theorem 6.2.1

Heroes in (A∪ T)∗ are the same as heroes in tournaments. In particular, heroes in
Forbind(

−→
P 3) are the same as heroes in tournaments.

Proof : Let H be a hero in tournaments and c be the maximum dichromatic number of
an H-free tournament. We prove by induction on the number of vertices that H-free
digraphs in (A ∪ T)∗ are also c-dicolourable. Let G ∈ (A ∪ T)∗ on n ⩾ 2 vertices and
assume that all digraphs in (A∪ T)∗ on at most n− 1 vertices are c-dicolourable.

There exist G1, . . . , Gs, H1, . . . , Hs−1 and vertices v1 . . . , vs−1 such that the Gi’s and
the Hi’s are digraphs of A∪T with at least two vertices, G1 = K1, Gs = G, vi ∈ V(Gi)

and for i = 1, . . . s− 1, Gi+1 = Gi(vi ← Hi).
If all Hi are tournaments, then G is a tournament and is thus c-dicolourable. So we

may assume that there exists 1 ⩽ i ⩽ s − 1 such that Hi is an acyclic digraph. Let
x1, . . . , xt be the vertices of Hi. There exist t digraphs X1, . . . , Xt in (A∪ T)∗ such that
G is obtained from Gi+1 by substituting x1 by X1, x2 by X2, . . . , xt by Xt and some
vertices of V(Gi+1) \ {x1, . . . , xt} by digraphs in (A∪ T)∗. Note that the order in which
these substitutions are performed does not matter.

Let X = ∪1⩽i⩽tV(Xi). So V(G) \ X can be partitioned into 3 sets S+, S−, S0 such
that for every v ∈ X, v sees all vertices of S+, is seen by all vertices of S− and is
non-adjacent with all vertices of S0.

For i = 1, . . . , t, let Di = G[Gi \ (X\Xi)]. By induction, the Di’s are c-dicolourable.
For i = 1, . . . , t, let φi be a c-dicolouring of Di. Assume without loss of generality that
|φ1(X1)| ⩾ |φi(Xi)| for 1 ⩽ i ⩽ t. In particular −→χ (Xi) ⩽ |φ1(X1)| for i = 1, . . . , t.
Extend φ1 to a c-dicolouring of D by dicolouring each Xi (independently) with colours
from φ1(X1). We claim that this gives a c-dicolouring of G.

Let C be an induced directed cycle of G. If C is included in X or V(G) \ X, then
C is not monochromatic. So we may assume that C intersects both V(G) \ X and X.
Since vertices in X share the same neighbourhood outside X and C is induced, C must
intersect X on exactly one vertex, and this vertex can be chosen to be any vertex of X. In
particular, we may assume that it is in X1. Hence C is not monochromatic.

Note that the proof of the previous theorem actually works for the following
stronger statement:
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Theorem 6.2.2
Let C be a class of digraphs closed under taking substitution and let (A ∪ C)∗ be
the closure of A ∪ C under taking substitution. Then heroes in (A ∪ C)∗ are the
same as heroes in C.





7
H E RO E S I N O R I E N T E D C O M P L E T E M U LT I PA RT I T E
G R A P H S

This chapter is built upon a joint
work with Pierre Aboulker and
Pierre Charbit, published in [4].

In this chapter, we completely characterize heroes in oriented complete multipartite
graphs.

7.1 I N T RO D U C T I O N

Observe that oriented complete multipartite graphs are precisely the digraphs in
Forbind(K1 + TT2). The main goal of this chapter is to identify heroes in oriented
complete multipartite graphs. As discussed in Chapter 5, it is conjectured in [10] that
heroes in oriented complete multipartite graphs are the same as heroes in tournaments.
We disprove this conjecture by showing the following:
Theorem 7.1.1

C⃗3(1, 2, 2) is not a hero in oriented complete multipartite graphs.

We actually get a full characterization of heroes in oriented complete multipartite
graphs, by proving that:
Theorem 7.1.2

A digraph H is a hero in oriented complete multipartite graphs if and only if:
— H = K1,
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— H = H1 ⇒ H2, where H1 and H2 are heroes in oriented complete multipar-
tite graphs, or

— H = C⃗3(1, 1,H1) where H1 is a hero in oriented complete multipartite
graphs.

7.2 H E RO E S I N O R I E N T E D C O M P L E T E M U LT I PA RT I T E G R A P H S

Let G be a digraph. For two disjoint sets of vertices X, Y, we write X ⇒ Y to say
that for every x ∈ X and for every y ∈ Y, xy ∈ A(G), and we write X → Y to say
that every arc with one end in X and the other one in Y is oriented from X to Y (but
some vertices of X might be non-adjacent to some vertices of Y). When X = {x} we
write x⇒ Y and x→ Y.

7.2.1 Strong components

The goal of this subsection is to prove the following:
Theorem 7.2.1

If H1 and H2 are heroes in Forbind(K1 + TT2), then so is H1 ⇒ H2.

We actually prove the following stronger result:
Theorem 7.2.2

Let H1, H2 and F be digraphs such that H1 ⇒ H2 is a hero in Forbind(F) and H1

and H2 are heroes in Forbind(K1 + F). Then H1 ⇒ H2 is a hero in Forbind(K1 +

F).

To see that Theorem 7.2.2 implies Theorem 7.2.1, take F = TT2 and observe that
Forbind(TT2) is the class of digraphs with no arc and thus every digraph is a hero in
Forbind(TT2).

Note also that by taking F = K1, we have that Forbind(F) is empty and that
Forbind(K1 + F) is the class of tournaments, so Theorem 7.2.2 yields the result of
[25] (see (3.1)) stating that H is a hero in tournaments if and only if all of its strong
components are. Then, by induction, we get the same result for the class of digraphs
with bounded independence number, reproving Theorem 1.4 of [48].

The rest of this subsection is devoted to the proof of Theorem 7.2.2, which is
inspired but simpler (we got rid of the intricate notion of r-mountain) than the analo-
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gous result for tournaments in [25], even though our result is more general. In [34],
Chudnovsky, Scott and Seymour provided an alternative proof of this result for tour-
naments, and we figured out it could also similarly get adapted to oriented complete
multipartite graphs.

We start with a few definitions and notations. First, in order to simplify statements
of the lemmas, we assume H1, H2 and F are fixed all along the subsection and are as
in the statement of Theorem 7.2.2. So there exists constants c and h such that:

— H1 and H2 have at most h vertices,
— digraphs in Forbind(F,H1 ⇒ H2) have dichromatic number at most c,
— for i = 1, 2, digraphs in Forbind(K1 + F,Hi) have dichromatic number c.
If G is a digraph and uv ∈ E, we set Cuv = v+ ∩ u−, that is the of vertices that

form a directed triangle with u and v. Finally, for t ∈ N, we say that a digraph
K is a t-cluster if χ(K) ⩾ t and |V(K)| ⩽ f(t), where f(t) is the function defined
recursively by f(1) = 1 and f(t) = 1+ f(t− 1)(1+ f(t− 1)).

The structure of the proof is very simple, we prove that digraphs in Forbind(K1 +

F,H1 ⇒ H2) that do not contain a t-cluster for some t have bounded dichromatic
number (Lemma 7.2.3), and then that the ones that contain a t-cluster for some t also
have bounded dichromatic number (Lemma 7.2.4).

Lemma 7.2.3. There exists a function φ such that if t is an integer and G is a di-
graph in Forbind(K1+ F,H1 ⇒ H2) which contains no t-cluster as a subgraph, then
−→χ (G) ⩽ φ(c, h, t)

Proof : We prove this by induction on t. For t = 1 the result is trivial as a 1-cluster is
simply a vertex. Assume the existence of φ(c, h, t− 1), and assume G is a digraph in
Forbind(K1 + F,H1 ⇒ H2) which contains no t-cluster. Say an arc uv is heavy if Ce

contains a (t− 1)-cluster, and light otherwise. For a vertex u we define h(u) = {v ∈
V(G) | uv or vu is a heavy arc}.

Claim 7.2.3.1. For any vertex u, h(u) contains no (t− 1)-cluster.

Proof of Claim : Assume by contradiction that K is a (t − 1)-cluster in h(u). By
definition of h(u), for every v ∈ V(K), there exists a (t− 1)-cluster Kv in Cuv or Cvu

(depending on which of uv or vu is an arc). Let K ′ = {u} ∪ V(K) ∪ (∪v∈KV(Kv)).
We claim that K ′ is a t-cluster. First note that the number of vertices of K ′ is at most
1 + f(t − 1) + f(t − 1) · f(t − 1) = f(t). We need to prove that K ′ is not (t − 1)-
colourable, so let us consider for contradiction a (t− 1)-colouring of its vertices, and
without loss of generality assume u gets colour 1. Because K is a (t− 1)-cluster, some
vertex v in K must also receive colour 1, and since Kv is also a (t− 1)-cluster, some
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vertex w in Kv must also receive colour 1, which produces a monochromatic directed
triangle. So K ′ is indeed a t-cluster, a contradiction. □

Claim 7.2.3.2. For any vertex u, min(−→χ (u−),−→χ (u+)) ⩽ (h+ 1) · (φ(c, h, t− 1) +

c).

Proof of Claim : Let u ∈ V(G). By the previous claim and the induction hypothesis,
h(u) induces a digraph of dichromatic number at most φ(c, h, t− 1), so it is enough to
prove that one of the sets u−

ℓ := (u− \ h(u)) and u+
ℓ := (u+ \ h(u)) induces a digraph

with a dichromatic number at most h ·φ(c, h, t− 1) + c · (h+ 1).
If u+

ℓ induces a H2-free digraph, then it has dichromatic number at most c < h ·
φ(c, h, t − 1) + c · (h + 1), so we can assume that there exists V2 ⊆ u+

ℓ such that
G[V2] = H2. We now partition u−

ℓ into three sets A,B,C, each of which will have
bounded dichromatic number.

Let A = u−
ℓ ∩ (∪v∈V2

v+) = u−
ℓ ∩ (∪v∈V2

Cuv). For every v ∈ V2, uv ∈ E is
light (because V2 ⊆ u−

l ), so G[Cuv ∩A] does not contain a (t− 1)-cluster and is thus
φ(c, h, t− 1)-colourable by induction. Now, since H2 contains at most h vertices, we
get −→χ (A) ⩽ h ·φ(c, h, t− 1).

Let B = u−
ℓ ∩ (∪v∈V2

v0). Since G is (K1 + F,H1 ⇒ H2)-free, for every v ∈ V2, v0

is (F,H1 ⇒ H2)-free and thus −→χ (G[v0]) ⩽ c. Hence, −→χ (B) ⩽ c · h.
Finally, consider C = u−

ℓ \ (A ∪ B). By the definition of A and B, we get C ⇒ V2.
Since G is H1 ⇒ H2-free, G[C] is H1-free, and therefore −→χ (C) ⩽ c.

All together, we get −→χ (x−ℓ ) ⩽ h ·φ(c, h, t− 1) + c · (h+ 1) as desired. □

By the previous claim, we can partition the set of vertices into the two sets V− and
V+ defined by:

V− = {u ∈ V | −→χ (u−) ⩽ (h+ 1) · (c+φ(c, h, t− 1))}

V+ = {u ∈ V | −→χ (u+) ⩽ (h+ 1) · (c+φ(c, h, t− 1))}

If G[V−] is H1-free and G[V+] is H2-free, then −→χ (G) ⩽ 2c < φ(c, h, t) and we
are done. Assume that there exists V1 ⊆ V− such that G[V1] = H1 (the case where V+

contains an induced copy of H2 is symmetrical).
We now partition V(G) \ V1 into three sets of vertices depending on their relation

with V1 and prove that each of these set induces a digraph with bounded dichromatic
number.

Let A =
⋃

v∈V1
v−. By definition of V− and since V1 ⊆ V−, for every v ∈ V1, v−

has dichromatic number at most (h+ 1)(c+φ(c, h, t− 1)), and since H1 has h vertices
we get that −→χ (A) ⩽ h · (h+ 1) · (c+φ(c, h, t− 1)).
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Let B =
⋃

v∈V1
v0. Since G is (K1 + F,H1 ⇒ H2)-free, for every v ∈ V1, v0 is

(F,H1 ⇒ H2)-free and thus −→χ (G[v0]) ⩽ c. Hence, −→χ (B) ⩽ c · h.
Finally, let C = V(G) \ (A ∪ B ∪ V1). By definition of A and B, we have V1 ⇒ C,

hence C is H2-free and thus −→χ (C) ⩽ c.
All together, we get that −→χ (G) ⩽ h+ h · (h+ 1) · (c+φ(c, h, t− 1)) + ch+ c :=

φ(c, h, t).

The proof of the theorem will follow from the second lemma below.

Lemma 7.2.4. If G ∈ C contains a (3c+ 1)-cluster, then −→χ (G) ⩽ c · 2f(3c+1)+1.

Proof : Let K be a (3c+ 1)-cluster in G. Assume there exists a vertex u ∈ V(G) such that
u− ∩ V(K) is H1-free and u+ ∩ V(K) is H2-free. Since u0 ∩ V(K) is by assumption
(F,H1 ⇒ H2)-free, we get a partition of V(K) into three sets that induce digraphs with
a dichromatic number at most c, a contradiction (this still holds if u ∈ K as we can add
it to any of the sets without increasing the dichromatic number).

So, for every u ∈ V(G), either u− ∩ V(K) contains a copy of H1, or u+ ∩ V(K)

contains a copy of H2. Now for every V1 ⊆ V(K) such that G[V1] is isomorphic to
H1, the set of vertices u such that V1 ⊂ u− is H2-free and therefore has a dichromatic
number at most c. Similarly, for every V2 ⊂ V(K) such that G[V2] is isomorphic to
H2, the set of vertices u such that V2 ⊂ u+ is H1-free and therefore has a dichromatic
number at most c. By doing this for every possible copy of H1 or H2 inside V(K) we
can cover every vertex of V(G). Moreover, the number of subsets of V(K) that induces a
copy of H1 (resp. of H2) is at most 2f(3c+1). Hence, we get that −→χ (G) ⩽ c · 2f(3c+1)+1.

Proof of Theorem 7.2.2 : By Lemma 7.2.3 and Lemma 7.2.4, we get that every digraph
in Forbind(K1 + F,H1 ⇒ H2) has dichromatic number at most max(φ(c, h, 3c +

1), 2f(3c+1)+1c), which proves Theorem 7.2.2.

Remark 7.2.5. Let K(c, h) an integer such that digraphs in Forbind(F,H1 ⇒ H2)

have a dichromatic number at most K(c, h). From the proof above we can deduce
that taking

K(c, h) = max((2h · (h+ 1))5c+1, 22
2·33c+1

+1 · c)

works (proving as intermediate steps that for every integer t, we can take f(t) ⩽ 22·3
t

and φ(c, h, t) ⩽ (2h · (h+ 1))2c+t).
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7.2.2 Growing a hero

The goal of this subsection is to prove the following theorem:
Theorem 7.2.6

If H is a hero in oriented complete multipartite graphs, then so is C⃗3(1,H, 1).

The next lemma is proved in [25] (see (4.2)) for tournaments but actually holds for
every digraphs.

Lemma 7.2.7. Let G a digraph and let (X1, . . . , Xn) a partition of V(G). Suppose
that d is an integer such that:

— ∀ 1 ⩽ i ⩽ n −→χ (Xi) ⩽ d ,
— ∀ 1 ⩽ i < j ⩽ n , if there is an arc uv with u ∈ Xj and v ∈ Xi, then
−→χ (Xi+1 ∪Xi+2 ∪ · · · ∪Xj) ⩽ d

Then −→χ (G) ⩽ 2d.

Proof : Define a sequence s0 < s1 < ... < st = n defined recursively as follows: s0 = 0

and
sk = max{j > sk−1 |

−→χ (
⋃

sk−1<i⩽j

Xi) ⩽ d}

For k = 1 . . . t, and Yk =
⋃

sk−1<i⩽sk
Xi. By definition of the sequence sk, −→χ (Yk) ⩽ d

for k = 1, . . . , t and −→χ (Yk ∪Xsk+1) > d for k = 1, . . . , t− 1, so by the assumption of
the lemma, there cannot be an arc from Yj to Yi whenever i ⩽ j− 2. Hence,

⋃
i even Yi

and
⋃

i odd Yi both have dichromatic number at most d, and thus −→χ (G) ⩽ 2d.

The following is an adaptation of (4.4) in [25] with oriented complete multipartite
graphs instead of tournaments (note also that their proof is concerned with
C⃗3(1, k,H) while ours is concerned with C⃗3(1, 1,H)).

Lemma 7.2.8. Let G be a C⃗3(1, 1,H)-free oriented complete multipartite graph given
with a partition (X1, . . . , Xn) of its vertex set V(G). Suppose that c is an integer such
that:

— H-free oriented complete multipartite graphs have dichromatic number at most
r,

— ∀ 1 ⩽ i ⩽ n −→χ (Xi) ⩽ r,
— ∀ 1 ⩽ i ⩽ n ∀v ∈ Xi

−→χ (v+ ∩ (X1 ∪ · · · ∪Xi−1)) ⩽ r,
— ∀ 1 ⩽ i ⩽ n ∀v ∈ Xi

−→χ (v− ∩ (Xi+1 ∪ · · · ∪Xn)) ⩽ r.
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Then −→χ (G) ⩽ 8r+ 4.

Proof : We are going to prove that G satisfies the hypothesis of Lemma 7.2.7 with d =

4r+ 2, which implies the result. Let uv be an edge such that u ∈ Xj and v ∈ Xi where
1 ⩽ i < j ⩽ n. We want to prove that −→χ (Xi+1 ∪ Xi+2 ∪ · · · ∪ Xj) ⩽ 4r + 2. Let
W = Xi+1 ∪ · · · ∪ Xj−1. Let Q = v+ ∩ u− ∩W. If Q contains a copy of H, then
together with u and v it forms a C⃗3(1,H, 1), a contradiction. So Q is H-free and thus
is r-colourable. Now, each vertex in W \Q is in u+ ∪ v− ∪ uo ∪ vo. By hypothesis,
−→χ (v+ ∩W) and−→χ (v− ∩W) are both r-colourable, and since G is an oriented complete
multipartite graph, uo and vo are stable sets. Finally, by hypothesis, −→χ (Xj) ⩽ r. All
together, we get that −→χ (Xi+1 ∪ · · · ∪Xj) ⩽ 4r+ 2 as announced.

Proof of Theorem 7.2.6 : Let H be a hero in oriented complete multipartite graphs and let
h = |V(H)|. By applying Theorem 7.2.1 with H1 = H2 = H, we get that H ⇒ H is
a hero in oriented complete multipartite graphs. So there exists a constant c such that
every (H ⇒ H)-free oriented complete multipartite graphs have a dichromatic number
at most c. Note that it also implies that every H-free oriented complete multipartite
graphs have a dichromatic number at most c.

Let G be a C⃗3(1, 1,H)-free oriented complete multipartite graph. Set r = 12c · h2 +

4c · h+ 3c+ 18h. We are going to prove that −→χ (G) ⩽ 8r+ 4 using Lemma 7.2.7
We say that J ⊆ V(G) is a H-jewel if G[J] is isomorphic to H ⇒ H. The important

feature about an H-jewel J in an oriented complete multipartite graph is that, for any
vertex x not in J, either x+ ∩ J or x− ∩ J contains a copy of H, or x has both an in-
and an out-neighbour in J. A H-jewel-chain of length n is a sequence (J1, . . . , Jn) of
pairwise disjoint H-jewels such that for i = 1, . . . , n− 1, Ji ⇒ Ji+1 , and for every
1 ⩽ i < j ⩽ n, Ji → Jj. Both notions of H-jewel and H-jewel-chain exist in [25], the
ones we give here are slightly different but are morally similar.

Consider a H-jewel-chain (J1, . . . , Jn) of maximum length n. Set J = J1 ∪ · · · ∪ Jn
and W = V(G) − J. To simplify statements, we also consider sets Ji for i ⩽ 0 and
i ⩾ n+ 1, which are assumed to be empty.

The easy but key properties of an H-jewel-chain are stated in the following claim.

Claim 7.2.8.1. For every w ∈W and 1 ⩽ j ⩽ n:
— w+ ∩ Jj ̸= ∅ ⇒ w+ ∩ Jj+1 ̸= ∅
— w− ∩ Jj ̸= ∅ ⇒ w− ∩ Jj−1 ̸= ∅.
Proof of Claim : Assume w+ ∩ Jj ̸= ∅. Then since Jj ⇒ Jj+1, it is not possible that
G[w− ∩ Jj+1] contains a copy of H for it would create a C⃗3(1,H, 1). Since G[Jj+1] is
isomorphic to H ⇒ H, and since w cannot have a non-neighbour in both copies of H
(because G is an oriented complete multipartite graph), this implies that w has at least
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one out-neighbour in Jj+1. The proof of the second item is identical up to the reversal
of the arcs. □

For every w ∈ W, let c(w) be the smallest integer j such that w+ ∩ Jj ̸= ∅ if such
an integer exists, and c(w) = n+ 1 if no such integer exists. For j = 1, . . . , n+ 1, set
Wj = {w : c(w) = j} and Xj = Jj ∪Wj. Note that, by definition of the Wj’s, if w ∈Wj,
then Ji → w for every i ⩽ j− 1.

Claim 7.2.8.2. −→χ (Xj) ⩽ 4c · h2 + c+ 6h for j = 1, . . . , n+ 1.

Proof of Claim : Let 1 ⩽ j ⩽ n+ 1. We have −→χ (Jj) ⩽ |Jj| ⩽ 2h.
For each pair of vertices a ∈ Jj and b ∈ Jj+1, set Aab = {w ∈ Wj : bw, wa ∈

A(G)}. Since ab ∈ A(G) (because Jj ⇒ Jj+1), and G is C⃗3(1,H, 1)-free, Aab

must be H-free and thus is c-colourable for every choice of a and b. Setting A =⋃
a,b∈Jj×Jj+1

Aab, we get that −→χ (A) ⩽ 4h2 · c. Moreover, since every vertex in Wj has
an out-neighbour in Jj, we have A = {w ∈Wj | w

− ∩ Jj+1 ̸= ∅}
Let B = {w ∈ Wj : w

o ∩ Jj−1 ̸= ∅ or wo ∩ Jj+1 ̸= ∅}, in other words B is the set of
vertices in Wj with at least one non-neighbour in Jj−1 or Jj+1. Since G is an oriented
complete multipartite graph, we have −→χ (B) ⩽ |Jj−1|+ |Jj+1| ⩽ 4h.

Let C = Wj \ (A∪ B). By definition of Wj, for every i ⩽ j− 1, Ji → C. Since C is
disjoint from A, we have C→ Jj+1, and thus, by claim 7.2.8.1 (second bullet), we have
C → Jk for every k ⩾ j+ 1. Finally, since C is disjoint from B, we have furthermore
Jj−1 ⇒ C and C ⇒ Jj+1. Now, if C contains a H-jewel-chain (J ′1, J

′
2) of length 2, then

(J1, . . . , Jj−1, J
′
1, J
′
2, Jj+1, . . . , Jn) is a H-jewel-chain of size n + 1, contradicting the

maximality of n. Hence, C does not contain a jewel chain of size 2 and thus −→χ (C) ⩽ c.
All together, we get that −→χ (Xj) ⩽ 4c · h2 + c+ 6h. □

Claim 7.2.8.3. For j = 1, . . . , n and for every u ∈ Jj,
— −→χ

(
u+ ∩ (X1 ∪ · · · ∪Xj−1)

)
⩽ 4c · h2 + 2c · h+ c+ 6h, and

— u− ∩ (Xj+1 ∪ · · · ∪Xn+1) = ∅
Proof of Claim : Let 1 ⩽ j ⩽ n and let u ∈ Jj. We first prove the first bullet.
By definition of an H-jewel-chain, u has no out-neighbour in any Ji for i ⩽ j − 1

and by Claim 7.2.8.2, −→χ (Xj−1) ⩽ 4c · h2 + c + 6h. So it is enough to prove that
A = u+ ∩ (W1 ∪ · · · ∪Wj−2) has a dichromatic number at most 2c · h. By Claim
7.2.8.1, every vertex of W1 ∪ · · · ∪Wj−2 has an out-neighbour in Jj−1. Moreover, for
every v ∈ Jj−1, we have vu ∈ A(G) (because Jj−1 ⇒ Jj) and v− ∩A is H-free, for
otherwise a copy of H in v− ∩A would form, together with v and u, a C⃗3(1,H, 1). So
−→χ (A) ⩽ |Jj| · c = 2c · h as needed.

To prove the second bullet, observe that for every k ⩾ j+ 1, since J is a jewel chain,
u has no in-neighbour in Jk and by definition of Wk, u has no in-neighbour in Wk. □
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Claim 7.2.8.4. For j = 1, . . . , n+ 1 and for every w ∈Wj,
— −→χ

(
w+ ∩ (X1 ∪ · · · ∪Xj−1)

)
< 8c · h2 + 2c · h+ 2c+ 12h, and

— −→χ
(
w− ∩ (Xj+1 ∪ · · · ∪Xn+1)

)
⩽ 8c · h2 + 2c+ 12h

Proof of Claim : Let 1 ⩽ j ⩽ n+ 1 and let w ∈Wj.
We first prove the first bullet. By definition of Wj, w has no out-neighbour in any

of the Ji for i ⩽ j− 1 and by Claim 7.2.8.2 −→χ (Wj−2 ∪Wj−1) ⩽ 8c · h2 + 2c+ 12h.
So it is enough to prove that A = w+ ∩

(
W1 ∪ · · · ∪Wj−3

)
has dichromatic number

at most 2c · h. Again by definition of Wj we have Jj−2 → w and Jj−1 → w, and
since Jj−2 ∪ Jj−1 induces a tournament and G is (K1 + TT2)-free, w has at most one
non-neighbour in Jj−2 ∪ Jj−1. So there exists s ∈ {j− 2, j− 1} such that Js ⇒ w. For
every v ∈ Js, if v− ∩A contains a copy of H, then it would form, together with v and
w, a C⃗3(1, 1,H), a contradiction. So, for every v ∈ Js, v− ∩A is H-free and is thus
c-colourable. Finally, by claim 7.2.8.1 every vertex in A has an out-neighbour in Js. So
we get that −→χ (A) ⩽ 2c · h.

We now prove the second bullet. If j ⩾ n−1, then by claim 7.2.8.2−→χ (Xn∪Xn+1) ⩽
8c ·h2+ 2c+ 12h and we are done. So we may assume that j ⩽ n− 2 By claim 7.2.8.2,
−→χ (Xj+1) ⩽ 4c ·h2+ 8h+ c, so we may assume that j ⩽ n− 2. Set B = w− ∩

(
Xj+2 ∪

· · · ∪ Xn+1

)
. By Claim 7.2.8.1, w has an out-neighbour v ∈ Jj+1. For i ⩾ j + 2,

by definition of an H-jewel-chain, v → Ji and by definition of Wi, v → Wi. So
v → B and since G is an oriented complete multipartite graph B \ (v+ ∩ B) is a stable
set. Now, v+ ∩ B is H-free, as otherwise G would contain an C⃗3(1,H, 1). So v+ ∩ B

is c-colourable and thus −→χ (B) ⩽ c + 1 and thus −→χ
(
w− ∩ (Xj+1 ∪ · · · ∪ Xn+1)

)
⩽

−→χ (Xj+1) + c+ 1 ⩽ 4c · h2 + 3c+ 6h+ 1 by claim 7.2.8.2. □

By Claims 7.2.8.2, 7.2.8.3 and 7.2.8.4, we can apply Lemma 7.2.7 with r = 12c ·
h2 + 4c · h+ 3c+ 18h to get −→χ (G) ⩽ 8r+ 4.

7.3 C⃗3(1, 2, 2) I S N OT A H E RO I N O R I E N T E D C O M P L E T E M U LT I PA R -
T I T E G R A P H S

In [16] Axenovich et al. tried to characterize patterns that must appear in every
ordering of the vertices of graphs with a large chromatic number. An (undirected)
graph G is (what we call) non-interlaced if there exists an ordering (x1, . . . , xn) on its
vertices such that for every i1 < i2 < i3 < i4 < i5, {xi1xi3, xi3xi5, xi2xi4} ⊊ E(G).
See Figure 14. They left as an open question whether non-interlaced graphs have
bounded chromatic numbers or not. In a personal communication, Bartosz Walczak
gave us proof of the following result:
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Theorem 7.3.1
The class of non-interlaced graphs has an unbounded chromatic number.

The goal of this section is to deduce from this result that C⃗3(1, 2, 2) is not a hero
in oriented complete multipartite graphs. See Theorem 7.3.4.

xi1 xi2 xi3 xi4 xi5

Figure 14 – A graph is non-interlaced if there is an ordering of its vertices that avoids the
above pattern as a subgraph.

Given an oriented complete multipartite graph D together with an ordering
(V1, . . . , Vn) on its parts, the arcs going from Vi to Vj are called forward arcs if
i < j, and backward arcs otherwise. Moreover, given i < j, we say that u < v for
every u ∈ Vi and every v ∈ Vj. Finally, we say that an oriented complete multipartite
graph D is flat if it admits an ordering (V1, . . . , Vn) on its parts such that for every
vertex v of D, the backward arcs going out from (resp. going in) v are included in a
single part of D. Such an ordering is called a flat ordering.

Lemma 7.3.2. Let D be an oriented complete multipartite graph with parts
V1, . . . , Vn where (V1, . . . , Vn) is a flat ordering. If D contains a copy of C⃗3(1, 2, 2),
naming its vertices as in Figure 15, we must have v1 < v2 < v3 < v4 < v5.

Proof : Suppose that D contains a copy of C⃗3(1, 2, 2) and name its vertices as in Figure 15.
Since C⃗3(1, 2, 2) is a tournament, vi’s are contained in pairwise distinct parts of D, and
thus are totally ordered. Since (V1, . . . , Vn) is a flat ordering, the smallest vertex among
{v1, v2, v3, v4, v5} must have in-degree at most 1 in C⃗3(1, 2, 2), and hence must be v1.
Similarly, since v5 is the only vertex with out-degree 1 in C⃗3(1, 2, 2), v5 must be the

v3

v1

v4 v2

v5

Figure 15 – C⃗3(1, 2, 2)
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v1 v2 v3 v4 v5

Figure 16 – A drawing of C⃗3(1, 2, 2) where the backward arcs (coloured in red) induce the
forbidden pattern of non-interlaced graphs.

largest of the vi. If v3 < v2, then v3 < v2 < v5 and the arcs v2v3 and v5v3 contradicts
the fact that (V1, . . . , Vn) is a flat ordering, so v2 < v3. Similarly, if v4 < v3, then
v4 < v3 < v5 and the arcs v3v4 and v5v3 contradicts the fact that (V1, . . . , Vn) is a flat
ordering, so v3 < v4 and thus v1 < v2 < v3 < v4 < v5.

Theorem 7.3.3

If C⃗3(1, 2, 2) is a hero in oriented complete multipartite graphs, then every non-
interlaced graph has bounded chromatic number.

Proof : Assume that C⃗3(1, 2, 2) is a hero in oriented complete multipartite graphs. Let
F be the class of flat C⃗3(1, 2, 2)-free oriented complete multipartite graphs. Since
C⃗3(1, 2, 2) is a hero in oriented complete multipartite graphs, there exists a constant
r such that every digraph in F has a dichromatic number at most r. Let R ∈ F such
that −→χ (R) = r and recall that R has a flat ordering. We are going to prove that every
non-interlaced graph has a chromatic number at most 22

r
.

Let G be a non-interlaced (undirected) graph and (x1, . . . , xn) the ordering on V(G)

given by the definition of non-interlaced graphs (that is an ordering that avoids the pat-
tern in Figure 14). We construct an oriented complete multipartite graph D ′(G) as
follow. For each xi, we create a stable set Vi in D ′(G) of size n2 and we assume the
vertices of Vi are organised as an n× n matrix. The Vi are the parts of D ′(G). Let us
now explain how we orient the arcs. Given i < j, if xixj ∈ E(G), we orient the arcs
from each vertex of the ith line of Vj to each vertex of the jth column of Vi. Every other
arc is oriented from Vj to Vi. This completes the construction of D ′(G).

Let v ∈ Vi and assume v is in the jth line and the kth column of Vi. Then either
xjxi /∈ E(G) and no backward arcs go out from v, or xjxi ∈ E(G) and all backward arcs
going out from v are included in Vj (more precisely, they goes from v to the vertices
of the jth column of Vj). Similarly, either xkxi /∈ E(G) and no backward arc goes in
v, or xixk ∈ E(G) and all backward arcs going in v are included in Vk (more precisely,
they goes from the ith line of Vk to v). Hence, D ′(G) is flat and (V1, . . . , Vn) is a flat
ordering of D ′(G).
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We now construct another oriented complete multipartite graph D(G) from D ′(G)

by introducing, for j = 1, . . . , n− 1, a copy of R between Vj and Vj+1 that is seen by all
vertices in ∪i⩽jVj and sees all vertices in ∪k⩾i+1Vk. This completes the construction of
D(G).

It is clear that D(G) is an oriented complete multipartite graph and by inserting the
flat ordering of each copy of R between each consecutive Vj, we get a natural ordering
of the parts of D(G). In the rest of the proof, we speak about backward and forward
arcs of D(G) with respect to this ordering.

We are going to prove that D(G) ∈ F (so−→χ (D(G)) ⩽ r) and that χ(G) ⩽ 22
−→χ (D(G))

,
which together implies the result.

In order to help in our analysis, we will say that the vertices of D(G) that comes from
D ′(G) are green.

The following claim is straightforward by construction.

Claim 7.3.3.1. If uv is a backward arc of D(G), then either both u and v are green, or
u and v are both contained in one of the copies of R.

Claim 7.3.3.2. If v1, v2, v3, v4, v5 are vertices of D(G) such that v1 < v2 < v3 < v4 <

v5, then {v3v1, v5v3, v4v2} ⊊ A(D(G)).

Proof of Claim : For otherwise {x1x3, x3x5, x2x4} ⊆ E(G), a contradiction. □

Let us first prove that D(G) ∈ F. By claim 7.3.3.1, D(G) is flat and the ordering we
consider is a flat ordering. Assume that D(G) contains a copy of C⃗3(1, 2, 2) and name
its vertices as in Figure 15. By Lemma 7.3.2, we have that the vi are in pairwise distinct
parts of D(G) and v1 < v2 < v3 < v4 < v5. If v3 is in a copy of R, since v3v1 and v5v3
are backward arcs of D(G), we get by claim 7.3.3.1 that v1 and v5 are in the same copy
of R as v3. By construction, since v1 < v2 < v3 < v4 < v5, we get that v2 and v4 are
also in this same copy of R, a contradiction with the fact that R is C⃗3(1, 2, 2)-free. So
we may assume that v3 is green, and so are v1 and v5 by claim 7.3.3.1. Now, if v2 is in
a copy of R, then by claim 7.3.3.1 v4 is in the same copy of R, and since v2 < v3 < v4,
v3 must be in that same copy of R, a contradiction with the fact that v3 is green. Hence,
v2 is green and by claim 7.3.3.1 so is v4. Thus, every vi is green, a contradiction to
claim 7.3.3.2. This proves that D(G) ∈ F.

Since D(G) contains copies of R, it has dichromatic number at least r, and since
D(G) ∈ F, we get that −→χ (D(G)) = r. Consider a dicolouring −→φ of D(G) with r

colours We define a colouring φ of V(G) from−→φ as follows: for i = 1, . . . , n, φ(vi) is
the set of sets of colours used by each line of Vi. This gives us a colouring of V(G) with
at most 22

r
colours. Let us prove that it is a proper colouring of G that is, each colour

class is an independent set.
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Assume for contradiction that there exists xixj ∈ E(G) such that φ(xi) = φ(xj)

and assume without loss of generality that i < j. Let us first prove that D(G) has a
monochromatic backward arc. Consider the set of colours used in the ith line of Vj.
The same set of colours is used by the vertices of some line of Vi, say the kth. Now,
the jth vertex of the kth line of Vi is seen by every vertex of the ith line of Vj, which
implies the existence of a monochromatic backward arc as announced. Let uv be this
monochromatic backward arc, with v ∈ Vi and u ∈ Vj. Since i < j, there is a copy
of R between Vi and Vj. Since −→χ (R) = r, one of the vertex x of R is coloured with
−→φ (u). By construction of D(G), ux and xv are arcs of D(G) and thus {u, x, v} induces
a monochromatic directed triangle, a contradiction.

This, along with Theorem 7.3.1 implies:
Corollary 7.3.4

C⃗3(1, 2, 2) is not a hero in oriented complete multipartite graphs.

7.4 A N O R I E N T E D C O M P L E T E M U LT I PA RT I T E G R A P H O F L A R G E

D I C H RO M AT I C N U M B E R

The goal of this section is to prove that C⃗3(1, 2,
−→
C3), C⃗3(1,

−→
C3, 2), C⃗3(1, 2, 3) and

C⃗3(1, 3, 2) are not heroes in oriented complete multipartite graphs. This is a direct
consequence of Corollary 7.3.4, but we give here an ad hoc construction. Since re-
versing all arcs of a C⃗3(1, 2,

−→
C3)-free oriented complete multipartite graph results

in a C⃗3(1,
−→
C3, 2)-free oriented complete multipartite graph and does not change the

dichromatic number, if C⃗3(1, 2,
−→
C3) is not a hero in oriented complete multipartite

graphs then C⃗3(1,
−→
C3, 2) is not either. Similarly, if C⃗3(1, 2, 3) is not a hero in ori-

ented complete multipartite graphs then C⃗3(1, 3, 2) is not either. Hence, it is enough
to prove that C⃗3(1, 2,

−→
C3) nor C⃗3(1, 2, 3) are heroes in oriented complete multipartite

graphs. This is implied by the existence of {C⃗3(1, 2,
−→
C3), C⃗3(1, 2, 3)}-free oriented

complete multipartite graphs with arbitrarily large dichromatic number. The rest of
this section is dedicated to the description of such digraphs.

A feedback arc set of a given digraph G is a set of arcs F of G such that their dele-
tion from G yields an acyclic digraph. The idea of the construction comes from the
fact that a feedback arc set of C⃗3(1, 2,

−→
C3) or of C⃗3(1, 2, 3) must induce a digraph

with at least one vertex of in- or out-degree at least 2. We then describe an oriented
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complete multipartite graph with large dichromatic number in which every subtour-
nament has a feedback arc set inducing disjoint directed paths, implying that it does
not contain C⃗3(1, 2,

−→
C3) nor C⃗3(1, 2, 3) by the fact above.

Let G be a digraph. We denote by χ(G) the chromatic number of the underlying
graph of G. The (undirected) line graph of G is denoted by L(G) and defined as
follows: its vertex set is A(G), and two of its vertices ab, cd ∈ A(G) are adjacent if
and only if b = c.

Be aware that the next lemma deals with the chromatic number and not dichromatic
number. We think it appears for the first time in [41].

Lemma 7.4.1. [41] For every digraph G, we have χ(L(G)) ⩾ log(χ(G)).

Proof : Let G be a digraph and assume L(G) admits a k-colouring. Observe that a colour-
ing of L(G) is the same as a colouring of the arcs of G in such a way that no

−→
P 3 is

monochromatic. Consider the following colouring of G: for each v ∈ V(G), colour v
with the set of colours received be the arcs entering in v. This is a 2k-colouring of G
because the colouring of A(G) does not have monochromatic

−→
P 3.

Let s ⩾ 3 be an integer and let us describe the graph L(L(TTs)). Assuming the
vertices of TTs are numbered v1, . . . , vs in the topological ordering (that is, for all
1 ⩽ i < j ⩽ s, we have vivj ∈ A(T)), for any i < j < k, {vi, vj, vk} induces a
−→
P 3 in TTs. This way, we get a natural name for the vertices of L(L(TTs)), namely
V(L(L(TTs))) = {(vi, vj, vk) | for every i < j < k}. Moreover, edges of L(L(TTs))
are of the form (vi, vj, vk)(vj, vk, vℓ) for every i < j < k < ℓ. For 2 ⩽ j ⩽ s− 1, set
Vj = {(vi, vj, vk)} : i < j < k}. So Vj’s partition the vertices of L(L(TTs)) into stable
sets.

We now define the digraph Ds from L(L(TTs)) as follows. The vertices of Ds are
the same as the vertices of L(L(TTs)) and Ds is an oriented complete multipartite
graph with parts (V2, V3, . . . , Vs−1) and we orient the arcs as follow: given j < k,
the edges of L(L(TTs)) are oriented from Vj to Vk and all the other arcs are oriented
from Vk to Vj. This completes the description of Ds.

The arcs vivj such that i < j are called the forward arcs of Ds, and the other arcs
the backward arcs of Ds. Observe that the underlying graph of the graphs induced by
the forward arcs of Ds is L(L(TTs)).

The following remark is the crucial feature of Ds.
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Remark 7.4.2. Given a vertex (vi, vj, vk) of Ds, the forwards arcs going out
(vi, vj, vk) are included in Vk and the forward arcs going in (vi, vj, vk) are included
in Vi.

An out-star (resp. in-star) is a connected digraph made of one vertex of in-degree
0 (resp. of out-degree 0) and vertices of in-degree 1 (resp. out-degree 1). Observe
that a digraph that does not contain

−→
P 3 as a subgraph is a disjoint union of in- and

out-stars.

Lemma 7.4.3. For every integer s, −→χ (Ds) ⩾ 1
2 log(log(s)).

Proof : Let V2, . . . , Vs−1 be the partition of Ds as in the definition. Recall that V(Ds) =

{(vi, vj, vk) : 1 ⩽ i < j < k ⩽ s}. Denote by Fs the digraph induced by the forward
arcs of Ds. So the underlying graph of Fs is L(L(TTs)) and by Lemma 7.4.1, χ(Fs) ⩾
log(log(s)).

Let R be an acyclic induced subgraph of Ds. Observe that a directed path on 3 vertices
in Ds using only arcs in Fs must be of the form (vi1 , vi2 , vi3) → (vi2 , vi3 , vi4) →
(vi3 , vi4 , vi5) where 1 ⩽ i1 < i2 < i3 < i4 < i5 ⩽ s and is thus contained in a
directed triangle of Ds (because (vi1 , vi2 , vi3)(vi3 , vi4 , vi5) is not an edge of L(L(TTs)),
and thus is not an arc of Fs, and thus (vi3 , vi4 , vi5)(vi1 , vi2 , vi3) is an arc of Ds). Hence,
A(R) ∩A(Fs) does not contain

−→
P 3 as a subgraph and is thus a disjoint union of out-

and in-stars. So A(R) ∩A(Fs) can be partitioned into two stable sets of Fs. Hence, a
t-dicolouring of Ds implies a 2t-(undirected) colouring of Fs. As we have that χ(Fs) ⩾
log(log(s)), the result follows.

Lemma 7.4.4. If T is a tournament contained in Ds, then T has a feedback arc set
formed by disjoint union of directed paths.

Proof : Let T be a subgraph of Ds inducing a tournament. Then each vertex of T belongs
to a distinct Vi and thus, by Remark 7.4.2, the forward arcs of Ds that are in T induce a
disjoint union of directed paths (i.e. every vertex have in- and out-degree at most 1) and
clearly form a feedback arc set of T .

Lemma 7.4.5. For every s ⩾ 1, Ds does not contain C⃗3(1, 2,
−→
C3) nor C⃗3(1, 2, 3).

Proof : Observe that the two digraphs C⃗3(1, 2,
−→
C3) and C⃗3(1, 2, 3) only differ on the orien-

tation of one arc: reversing an arc of the copy of
−→
C3 in C⃗3(1, 2,

−→
C3) leads to C⃗3(1, 2, 3)

and reversing an arc of the copy of TT3 in C⃗3(1, 2, 3) leads to C⃗3(1, 2,
−→
C3). Our argu-

ment does not make any use of the orientations between the vertices inside this oriented
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K3. Let H be one of C⃗3(1, 2,
−→
C3) or C⃗3(1, 2, 2), and let x be the vertex in the copy of

K1, and y1 and y2 the vertices in the copy of TT2. See Figure 17.
Thanks to Lemma 7.4.4, it is enough to prove that in every feedback arc set of H,

there exists a vertex with in- or out-degree at least 2. Let F be a feedback arc set of
H and assume for contradiction that it induces a disjoint union of directed paths. Then
both xy1 and xy2 cannot belong to F. So we may assume without loss of generality that
xy1 /∈ F. But then F must intersect the three disjoint paths of length 2 that go from y1
to x, which necessarily implies that F contains either two arcs coming out of y1 or two
arcs coming in x.

x

y1

y2 z1
z2

z3

Figure 17 – Whatever the orientations of blue edges, Ds does not contain this tournament
and hence does not contain C⃗3(1, 2,

−→
C3) nor C⃗3(1, 2, 3).

By Lemma 7.4.3 and Lemma 7.4.5, C⃗3(1, 2,
−→
C3) and C⃗3(1, 2, 3) are not heroes in

oriented complete multipartite graphs.



8
D E C O M P O S I N G A N D D I C O L O U R I N G S O M E L O C A L LY
S E M I C O M P L E T E D I G R A P H S

This chapter is built upon a joint
work with Pierre Aboulker and
Pierre Charbit, published in [3].

In this chapter, we give decomposition theorems for locally semicomplete and lo-
cally out-transitive digraphs, and use them to prove multiple results.

8.1 N OTAT I O N S

A vertex x out-dominates (resp. in-dominates) a set of vertices X if X ⊆ x+ (resp.
X ⊆ x−). A vertex x strictly out-dominates (resp. strictly in-dominates) a set of
vertices X if X ⊆ x+ \ x− (resp. X ⊆ x− \ x+). A set of vertices X out-dominates
(resp. strictly out-dominates, in-dominates, strictly in-dominates) a set of vertices Y if
every vertex of X out-dominates (resp. strictly out-dominates, in-dominates, strictly
in-dominates) Y.

For a class P of digraphs (like semicomplete, tournament, acyclic), a digraph is
locally out-P (resp. locally in-P) if for every vertex x, x+ (resp. x−) induces a digraph
in P. For example, a digraph D is locally out-semicomplete if the out-neighbourhood
of every vertex of D induces a semicomplete digraph. Finally, we will say that a
digraph is locally P if it is both locally out-P and locally in-P. We make one exception
for one of the main classes studied in this chapter: the oriented graphs for which the
out-neighbourhood of every vertex is a transitive tournament, for which we will use
the term "out-transitive oriented graphs" instead of the heavier and possibly confusing
"out-transitive tournament oriented graphs".
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A linear order on a digraph D is an order O = (v1, v2, . . . , vn) of its
vertices. Two orders O1 and O2 are equivalent if O1 = (v1, v2, . . . , vn) and
O2 = (vk, vk+1, . . . , vn, v1, v2, . . . , vk−1) for some k. An equivalence class for this
relation is called a cyclic order of D. Informally this means ordering the vertices of a
digraph along a circle. See Figure 18 for a digraph on 10 vertices with a cyclic order
given by the linear order (v1, v2, . . . , v10).

For two vertices vi and vj in a linear order O = (v1, v2, . . . , vn) the cyclic interval
[vi, vj] is defined as follow:

[vi, vj] =

{vk, k ∈ [i, j]} if i < j

{vk, k ̸∈ ]j, i[} if i ⩾ j

Note that cyclic intervals really only depend on the cyclic order and not on a linear
order chosen as a representative. We also define open and half open intervals ]vi, vj[=
[vi, vj] \ {vi, vj}, [vi, vj[= [vi, vj] \ {vj} and ]vi, vj] = [vi, vj] \ {vi}.

Given a linear order (v1, v2, . . . , vn), an arc vivj is forward if i < j and backward
otherwise. Note that a digraph is acyclic if and only if there exists a linear order for
which all arcs are forward arcs.

8.2 I N T RO D U C T I O N

Semicomplete digraphs are well studied and a natural and fruitful way to extend re-
sults on this class is to look at the class of locally semicomplete digraphs. Introduced
in 1990 by Bang-Jensen [17], locally semicomplete digraphs have since then been the
topic of more than 100 research papers, and a whole chapter in [22] is devoted to this
class. A particularly nice result in this area is one by Huang that gives a geometric
characterization of locally transitive digraphs. We state it here in the particular case
of oriented graphs.
Theorem 8.2.1 (Huang, [56])

If D = (V,A) is a connected oriented graph, then the two conditions below are
equivalent

1. for every vertex x, both x+ and x− induce a transitive tournament.
2. there exists a cyclic order of the vertices of D such that

∀xy ∈ A, ∀z ∈]x, y[, xz ∈ A and zy ∈ A
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Any oriented graph (strong or not) that satisfies the second condition above is called
a round oriented graph. In other words, for every vertex x, x+ (resp. x−) consists of a
cyclic interval placed just after (resp. before) x in the cyclic order. Note that a round
oriented graph is strong if and only if every vertex has at least one in-neighbour. This
is because the cyclic order given by the theorem then yields a Hamiltonian cycle. By
a similar observation, if a round oriented graph is not strong, then it is in fact acyclic.

Our first result is a generalization of the theorem above in the particular case of
strong oriented graphs.
Theorem 8.3.1

Let D be a strong oriented graph. Then conditions below are equivalent.

1. for every vertex x, x+ induces a tournament and x− induces an acyclic di-
graph

2. there exists a cyclic order of the vertices of D such that

∀xy ∈ A, ∀z ∈]x, y[, zy ∈ A

Again condition 2 can be seen as the property that for every vertex x, x− consists
in a cyclic interval placed just before x in the order (see Figure 18). Following the
terminology of [22], any oriented graphs satisfying condition 2 of the theorem above
will be called in-round.

In [63], we note that the authors prove a similar result with a stronger alternate
condition 1: they ask that for every vertex x, x+ induces a transitive tournament and
x− induces an acyclic digraph with a hamiltonian path. These additional conditions
(which are easily seen in fact to be implied by condition 2) are unnecessary, which
makes our theorem slightly stronger. Moreover, our proof, exposed in section 8.3, is
also much shorter.

In fact, Theorem 8.3.1 is the first step towards our main structural result, which
is a decomposition theorem for the class of strong locally out-transitive digraphs. If
H is a subdigraph of D, we define the contraction D/H as the digraph obtained by
removing all vertices of H, then adding a new vertex h such that xh (resp. hx) is an
arc of D/H if x+ ∩H (resp x− ∩H) is non empty. Beware that in general D/H might
contain digons (even if D does not), even though in our case this never happens.
Theorem 8.3.2
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v1

v2

v3

v4

v5 v6

v7

v8

v9

v10

Figure 18 – An in-round oriented graph that is not round

If D is a strong locally out-transitive oriented graph, then there exists a parti-
tion of its set of vertices into strong subdigraphs D1, . . . , Dk such that the digraph
obtained by contraction of D1, . . . , Dk is a strong in-round oriented graph.

We give two applications of this theorem. The first one is a dicolouring result: we
prove that if D is an out-transitive oriented graph, then it can be partitioned into two
acyclic induced subdigraphs. This proves a conjecture of [10]. Proof together with
the context of the conjecture is given in Section 8.4.1. This result was independently
proved by Raphael Steiner, see Remark 8.2.2. The second one is a proof that locally
in-tournaments satisfy the famous Caccetta-Häggkvist conjecture. This result is men-
tioned in [76] as an unpublished but not easy result of Paul Seymour but here the idea
is to show how our decomposition theorem more or less directly implies the result.
The proof is given in Section 8.4.2

Finally, in Section 8.5, we use the techniques developed for the proof of Theorem
8.3.2 to prove a structural theorem, Theorem 8.5.2, for the class of locally semicom-
plete digraphs. We then apply our Theorem 8.5.2 to give short proofs of two existing
results concerning 2-king and pancyclicity. Note that a different structural theorem
for locally semicomplete digraph had already been proved in [19] (see Theorem 3.12),
but seems to be independent of ours.

One idea behind this chapter is to promote the idea of finding a decomposition
theorem for classes of digraphs, that is a theorem whose statement is of the kind:
either a graph in this class is "basic" (belongs to some simple subclass), or it can
be decomposed in some prescribed ways. Such decomposition theorems proved to
be very powerful tools in the world of undirected graphs (the most famous example
being the celebrated proof of the perfect graph conjecture by Chudnovsky et al in
[32]), and there are to our knowledge not so many theorems of this kind in the world
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of directed graphs, and there is no reason to believe that it could not be as effective in
this setting.

Remark 8.2.2. A week prior to the submission of [3], R. Steiner published on arXiv
a very nice paper [87] containing another proof of the dicolouring result of locally
out-transitive oriented graphs mentioned above (as well as other results about di-
colourings). Even though some of the ingredients are in common, the proof is longer
and is different as it is an entirely inductive proof whereas ours relies on the structure
theorem mentioned above.

8.3 D E C O M P O S I N G L O C A L LY O U T- T R A N S I T I V E O R I E N T E D G R A P H S

We start by proving the theorem mentioned in the introduction about strong ori-
ented graphs that are both locally out-tournament and locally in-acyclic.
Theorem 8.3.1

Let D be a strong oriented graph. Then conditions below are equivalent.

1. for every vertex x, x+ induces a tournament and x− induces an acyclic di-
graph

2. there exists a cyclic order of the vertices of D such that

∀xy ∈ A(D), ∀z ∈]x, y[, zy ∈ A(D)

We recall that we will use the term in-round for any oriented graph satisfying condi-
tion 2.
Proof of Theorem 8.3.1 : The easy direction is 2 implies 1. Indeed, let x, y, z be such that

y, z ⊂ x+ and assume w.l.o.g that z ∈]x, y[. Then by 2 we have that zy ∈ A, so x+ is
a tournament. Assume now that x− contains a directed cycle C, and let y be the vertex
of C such that C \ y ⊆]y, x[ (the leftmost vertex of C in the representative of the cyclic
order which ends in x). Let z be the predecessor of y in C. Now we have that x ∈]z, y[
and so by 2 there must be an arc xy, which contradicts the fact that y ∈ x− (there are
no digon here).

Now assume 1. For every vertex x, x− induces a non-empty acyclic oriented graph,
and hence contains a vertex y such that y+∩x− = ∅ (take the last vertex in a topological
ordering of x−). For every x we arbitrarily choose one such vertex and denote it by f(x).
If z ∈ f(x)+ \ {x}, then since f(x)+ induces a tournament, z and x must be connected by



136 D E C O M P O S I N G A N D D I C O L O U R I N G S O M E L O C A L LY S E M I C O M P L E T E D I G R A P H S

an arc, and this cannot be zx by definition of f(x), so it must be xz. So x out-dominates
f(x)+ \ {x} for every vertex x.

Now let H be the oriented graph induced by the arcs f(x)x. Each vertex of H has
in-degree exactly 1, so H contains a cycle C. Set V(C) = {v1, . . . , vn} where vivi+1 ∈
A(C) for i = 1, . . . , n− 1 and vnv1 ∈ A(C). So f(vi+1) = vi for i = 1, . . . , n− 1 and
f(v1) = vn. If C does not span all vertices of D, then, since D is strong, there exists an
arc xy ∈ A(D) such that x ∈ V(C) and y ̸∈ V(C). Assume without loss of generality
that x = v1. Since f(v2) = v1, v2 out-dominates v+1 \ {v2}, so v2y ∈ A(D). Similarly,
y in-dominates V(C), which contradicts 1.

So C consists of a Hamiltonian cycle of D. Let vi, vj ∈ V(C) such that vivj ∈
A(D). We consider subscripts modulo n. We have f(vi+1) = vi, so vi+1 out-dominates
v+i \ {vi}. Hence vi+1vj ∈ A(D). Applying the same reasoning to f(vi+2) = vi+1,
we get that vi+2vj ∈ A(D). Similarly, for every k such that i < k < j, we have
vkvj ∈ A(D), so 2 holds.

We now recall the statement of the main structural theorem mentioned in the intro-
duction.
Theorem 8.3.2

If D is a strong locally out-transitive oriented graph, then there exists a partition
of its set of vertices into strong subdigraphs D1, . . . , Dk such that the digraph ob-
tained by contraction of D1, . . . , Dk is a strong in-round oriented graph.

Let us start with a lemma about locally out-semicomplete digraphs (be aware that
the rest of this section is about oriented graphs and not digraphs, but we state it here
for digraphs as we will make use of it in Section 8.5, where we study digraphs).

Lemma 8.3.3. Let D be a locally out-semicomplete digraph. Let H be a strong
induced subdigraph of D and let z ∈ V(D) \ V(H). If z− ∩ V(H) ̸= ∅ and z+ ∩
V(H) = ∅, then z in-dominates V(H).

Proof : Let h and h ′ be vertices of H such that hz and hh ′ are arcs of D. Because D is
locally out-semicomplete and z+ ∩ V(H) = ∅, h ′z must be an arc. Since H is strong,
we get that z in-dominates V(H).

Proof of Theorem 8.3.2 : From now on D will denote a strong locally out-transitive ori-
ented graph.

We define a hub to be a subset of vertices H of D such that
— H induces a strong oriented graph,
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— there exists x /∈ H such that x in-dominates H.
Note that a hub is necessarily a strict subset of V(D). A hub is trivial if it consists of

a single vertex.
By Theorem 8.3.1, an oriented graph is in-round if the in-neighbourhood of each ver-

tex induces an acyclic oriented graph, and the out-neighbourhood induces a tournament.
Hence, since a cycle that is out-dominated by a vertex is a hub, D is in-round if and only
if there is no non-trivial hub.

Assume D is not in-round, and consider a hub H that is (inclusion-wise) maximal.
We want to prove that D/H is a locally out-transitive oriented graph, i.e. D/H does
not contain digon and is locally out-transitive. Assume first by contradiction that D/H

contains a digon, so there exists a vertex z /∈ H that is mixed for H, that is such that there
exists {h, h ′} ⊂ H with (hz, zh ′) ∈ A(D)2. Since H is strong, there is a directed path
from h to h ′. Consider such h and h ′ with a directed path of minimal length joining
them in H. Since h+ induces a tournament, the vertex following h in this directed path
must be adjacent with z, implying that hh ′ ∈ A(D) by the choice of h and h ′. There
exists x in V(D) such that H ⊂ x−, and since D is a locally out-transitive oriented graph,
there must be an arc between x and z. It cannot be xz because in that case, h+ would
contain {x, z, h ′} which induces a directed triangle, a contradiction to the fact that D is
locally out-transitive. So zx must be an arc. But then H ∪ {z} is a hub that contradicts
the maximality of H. This proves that D/H does not contain digon.

We now prove that D/H is locally out-transitive. First observe that by Lemma 8.3.3,
there are three types of vertices outside H: the one that have no arc to or from H, the one
that has out-neighbours in H but no in-neighbour, and the ones that in-dominates H. Let
h be the vertex of D/H obtained after having contracted H. Let x be an in-neighbour
of h in D/H, which means that in D, x is an in-neighbour of some vertex y ∈ H. Let
z be another out-neighbour of x in D/H. As D is locally out-transitive, y and z must
be adjacent in D, and thus z is adjacent with h in D/H. Thus the out-neighbourhood
of x in D/H is a tournament. Assume now for contradiction that x+ contains a directed
triangle hz1, z1z2 z2h in D/H. So z1 has an in-neighbour h1 in H and z2 has an out-
neighbour in H. Since D is locally out-transitive and h1 and z2 are out-neighbours of
x, z2 and h1 must be adjacent, and since z2 has an out-neighbour in H, it has no in-
neighbour in H and thus z2h1 ∈ A(D). But then {z1, z2, h1} induces a directed triangle
in the out-neighbourhood of x in D, a contradiction. It remains to show that h+ induces
a transitive tournament in G/H, which is implied by the fact that if a vertex z has an
in-neighbour in H, then it in-dominates H.

Consider now two distinct maximal hubs H1 and H2. We want to prove that their
intersection is empty. For i = 1, 2, let h1 be a vertex that in-dominates Hi. Note that
it is not possible that h1 ∈ H2 and h2 ∈ H1 simultaneously, as this would imply a
digon between the two vertices. So without loss of generality, assume h1 /∈ H2. But
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now if H1 ∩H2 is non-empty, then h1 has an in-neighbour in H2 and by Lemma 8.3.3
and since we proved that no vertex can be mixed for H2, we have that h1 in-dominates
H1 ∪H2, which is, therefore, a hub (it is strongly connected because the intersection is
non-empty). This contradicts the maximality of H1 and H2

This proves that maximal hubs define a partition of V(D) (recall that every vertex
belongs to a maximal hub since every singleton is a hub). Moreover, as argued above,
if there is an arc xy from a maximal hub H1 to a maximal hub H2, then y in-dominates
H1. We summarize this with the following claim (the transitive tournament fact is due
to the graph being locally out-transitive).

Claim 8.3.3.1. Maximal hubs form a partition of V(D). Moreover, if H1 and H2 are
two maximal hubs, then either:
— there is no arc between H1 and H2, or
— there are all arcs from H1 to a subset of H2 inducing a transitive tournament, and

no other arc, or
— there are all arcs from H2 to a subset of H1 inducing a transitive tournament and

no other arc.

Let D ′ be the digraph obtained by contracting every maximal hub. If D ′ contains a
non-trivial hub H ′, then by the claim above it is clear that the set H of vertices of D
that are mapped to vertices in H ′ by the contraction form a hub that would contradict
the maximality of the hubs that were contracted to obtain D ′. So D ′ contains no non-
trivial hub, so no in-dominated cycle, and hence by Theorem 8.3.1, it is in-round. This
concludes the proof of Theorem 8.3.2.

8.4 A P P L I C AT I O N S O F T H E O R E M 8 . 3 . 2

8.4.1 Dicolourings

We recall the following conjecture.
Conjecture 8.4.1 ([10])

Let H be a hero and let F be an oriented forest. The set {H, F} is heroic if and only
if:

— either F is the disjoint union of oriented stars,
— or H is a transitive tournament.

The first case that was left in [10] is the case F = S+2 , and H =
−→
C3 and it was con-

jectured that digraphs without any induced subgraph in {
−→
C3, S

+
2 } have a dichromatic
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number at most two. As mentioned in the introduction, we now prove this result, and
in fact a stronger result.
Theorem 8.4.2

Every locally out-transitive oriented graph has a dichromatic number at most 2.

Note that it indeed extends the question mentioned above as it amounts to forbid-
ding

←→
K2 , S+2 and the tournament on 4 vertices built by taking a directed triangle

−→
C3

and adding a vertex with an arc going to the three other vertices. As already said,
forbidding S+2 implies that every out-neighbourhood induces a tournament, and for-
bidding this 4-vertex tournament implies that every out neighbourhood must induce
a
−→
C3-free tournament, hence acyclic (every tournament containing a directed cycle

must contain a
−→
C3).

To ease the induction proof we will prove the following stronger result.
Theorem 8.4.3

Let D be a locally out-transitive oriented graph and T a subset of V(D) inducing a
transitive tournament. Then D admits a proper 2-dicolouring such that all vertices
of T receive the same colour.

The first step towards the proof of this theorem is to prove the exact same statement
for the class of in-round oriented graphs (which we recall can also be seen as locally
out-transitive and locally in-acyclic oriented graphs).
Proposition 8.4.4

Every in-round oriented graph has a dichromatic number at most 2. More pre-
cisely, for every vertex x, there exists a proper 2-dicolouring such that {x} ∪ x+ is
monochromatic.

Proof : We may assume that the oriented graph is strong since otherwise a 2-dicolouring
of each strong component yields a proper 2-dicolouring of the whole oriented graph.
Consider the cyclic order given by the definition of in-round and pick any vertex x. Let
y be the vertex such that xy is a longest arc, that is the arc such that the interval [x, y]
contains the maximum number of vertices. This implies that in the linear order given by
the interval ]y, x[, all arcs are forward arcs since a backward arc x ′y ′ would force the
arc xy ′, contradicting the maximality of xy. Hence, ]y, x[ induces an acyclic oriented
graph. Moreover, [x, y] induces an acyclic oriented graph since it is included in y− and
by definition of the in-round cyclic order. This concludes the proof.

We are now ready to prove Theorem 8.4.3.
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Proof of Theorem 8.4.3 : Let D be a locally out-transitive oriented graph and T a subset
of V(D) inducing a transitive tournament. Again we can assume that D is strong, and we
proceed by induction on the number of vertices of D. We consider the decomposition
of V(D) into maximal hubs given by Theorem 8.3.2 and label the hubs H1, . . . , Hn

so that the order corresponds to the cyclic order h1, . . . , hn of the in-round oriented
graph D ′ obtained after contracting H1, . . . , Hn. Since the theorem guarantees that D ′

contains no digon, there can exist arcs in only one direction between two distinct Hi.
Moreover, Lemma 8.3.3 implies that if there is an arc xy from x ∈ Hi to y ∈ Hj,
then y in-dominates Hi. Moreover, by the in-round property of D ′, we also get that y
in-dominates Hk for every k ∈ [i, j[.

We define Ti for i = 1, . . . , n to be the set of vertices in Hi that have an in-neighbour
out of Hi. T is non empty since D is strong, and by the previous discussion Ti = x+∩Hi

for every x ∈ Hi−1, which in particular implies that Ti induces a transitive tournament.
Let s be the source in the transitive tournament T , and without loss of generality assume
it belongs to H1. Note that because every other vertex in T is an out-neighbour of s,
we have that T ∩Hi ⊆ Ti for every i ⩾ 2. Finally, we observe that if C is a cycle that
intersects Hi, then either C intersects Ti or C is entirely included in Hi.

T1

H1

H2

T2

H3 T3

h1

h2

h3
D D′

Figure 19 – The digraphs D and D ′ in the proof of 8.4.3

Now we are ready to define our dicolouring. First, we consider the in-round oriented
graph D ′ and denote by T ′ the subtournament (transitive) in D ′ consisting in all hi such
that T ∩Hi is non-empty. By Proposition 8.4.4, there exists a proper 2-dicolouring of
D ′ such that the out-neighbourhood of h1 (which contains T ′) is monochromatic, say
coloured 1. Now by induction, we can ask for every i ⩾ 2 for a dicolouring of Hi such
that all vertices of Ti get the colour of hi in the dicolouring of D ′ defined above. For
i = 1 we ask by induction for a dicolouring of H1 such that every vertex of T ∩H1 gets
the colour of h1, that is 1. On Figure 19, we pictured a case where T intersects the hubs
H1,H2 and H3, colour 1 is blue, and colour 2 is red.
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First, note that in this dicolouring, every vertex of T gets colour 1 because of the
assumption on the dicolouring of D ′. We now need to prove that this dicolouring is a
proper 2-dicolouring of D. Assume by contradiction that there exists a monochromatic
cycle and consider a minimal such cycle C. Since the dicolouring is by induction proper
in every hub, C is not included in any Hi. Since the vertices in each Hi have the same
out-neighbours out of Hi, the minimality of C implies that C contains at most one vertex
from each hub Hi and this vertex must belong to Ti. The only case where this does
not yield directly a monochromatic cycle in the contracted digraph D ′ (and hence a
contradiction) is if C is coloured 2 and contains a vertex x in T1 \ T . Let y be its
successor on the cycle. Then y belongs to some Tj where j is such that h1hj is an arc
of D ′. But by assumption on the dicolouring of D ′ this implies that hj gets colour 1
and therefore y must get colour 1, which is a contradiction that finishes the proof of
Theorem 8.4.3.

8.4.2 A Special Case of the Caccetta-Häggkvist Conjecture

A beautiful and famous conjecture due to Caccetta and Häggkvist states the follow-
ing.
Conjecture 8.4.5 (Caccetta-Häggkvist)

Let k ⩾ 2 be an integer. Every digraph D on n vertices with no directed circuits
of length at most k contains a vertex of out-degree less than n/k.

The case k = 2 is trivial but the case k = 3 is still widely open and has attracted a
lot of attention. In [76] (see page 3), it is mentioned that for k = 3, while adding the
hypothesis that the graph has no S+2 makes it very easy, the dual case of forbidding
S−2 was proven by Seymour but is "substantially more difficult".

Here we prove that this comes as an easy consequence of Theorem 8.3.2 and The-
orem 8.3.1, for any value k ⩾ 3.
Theorem 8.4.6

Let D be locally in-tournament oriented graph on n vertices with no directed cycle
of length at most k. Then D contains a vertex of out-degree less than n/k.

Theorem 8.3.2 and Theorem 8.3.1 were designed for locally out-tournament but of
course by reversing the arcs we get an equivalent statement for locally in-tournament
(here an out-round digraph is a digraph obtained by an in-round digraph by reversing
all the arcs). We combine both to get this corollary.
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Corollary 8.4.7

If D is a strong locally in-tournament that does not contain any
−→
C3, there exists

a partition of its set of vertices into strong subdigraphs D1, . . . , Dk such that the
digraph D ′ obtained by contraction of every Di is a strong oriented graph which is
out-round, that is admits a cyclic order on its vertices such that

∀x, y, z ∈ V(D ′) (xy ∈ A(D ′)∧ z ∈]x, y[) ⇒ xz ∈ A(D ′)

Proof of Theorem 8.4.6 : Let D be a digraph as in the statement of the theorem and denote
by n the number of its vertices. First observe that we can assume D to be strong, since
one can apply it to a terminal strong component. Since k ⩾ 3, notice that D does not
contain

−→
C3 so we can apply Corollary 8.4.7 above.

We begin by proving a weighted version for out-round oriented graphs.

Lemma 8.4.8. Let D be a strong out-round oriented graph with no dicycle
−→
C3 and let w

be a positive weight function on the vertices of D. Denote by W the sum of all weights.
Then there exists a vertex u such that∑

v∈u+

w(v) <
W −w(u)

k

Let us show first that this lemma indeed implies the theorem. We can apply Corollary
8.4.7 to D to obtain a strong out-round oriented graph D ′. We assign to each vertex
of D ′ a weight equal to the order of the corresponding contracted subdigraph of D and
apply the above lemma to get a vertex u satisfying the claim. Let Di be the subdigraph
of D whose contraction yielded u. Now by applying induction to Di, one finds a vertex
in Di with an out-degree (strictly) less than |Di|/k, which combined with the lemma
gives the desired result.

Let us now prove the lemma. Consider the cyclic order as in Corollary 8.4.7. For
every vertex x, denote by f(x) the last of its out-neighbour along the cyclic order and
by ϕ(x) the quantity

∑
y∈x+ w(y). Observe that due to the out-round structure, ϕ(x)

is exactly the sum of weights in the interval ]x, f(x)]. We denote also by f(i)(x) =

f(f(i−1)(x)) with the convention f(0)(x) = x.
Consider a path on k vertices of the form xf(x)f(2)(x) . . . f(k−1)(x). As-

sume by contradiction that there exists integers i and j such that the intervals
]fi(x), f(i+1)(x)[ and ]fj(x), f(j+1)(x)[ overlap, that is fj(x) ∈]fi(x), f(i+1)(x)[ and
f(i+1)(x) ∈]fj(x), f(j+1)(x)[. Because of the out-round property, this implies the
presence of the arcs fi(x)fj(x) and fj(x)f(i+1)(x). If j < i the first arc along with the
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path from fj(x) to fi(x) gives a cycle of length strictly less than k and similarly if j < i

with the second arc with the path from f(i+1)(x) to fj(x). In both cases, we, therefore,
have a contradiction. Hence the intervals ]fi(x), f(i+1)(x)[ are disjoint and consecutive,
and we have thus proven that for every vertex x

k−1∑
i=0

ϕ(f(i)(x)) ⩽ W −w(x)

Now consider some cycle C of the form yf(y)f(2)(y) . . . f(p−1)(y) = y (such a cycle
must exist). By summing the above inequality for all vertices in the cycle one gets

k
∑

x∈V(C)
ϕ(x) ⩽ Wp−

∑
x∈V(C)

w(x)

So there must exist x ∈ V(C) such that:

kϕ(x) +w(x) ⩽ W

which is exactly the assertion of the lemma.

8.5 S T RU C T U R E O F L O C A L LY S E M I C O M P L E T E D I G R A P H S

In this section, digons are allowed and we focus on locally semicomplete digraphs,
which we recall is the class of digraphs such that the in-neighbourhood and out-
neighbourhood of any vertex is semicomplete.

A statement in the flavour of Conjecture 8.4.1 is easy to prove. The proof was
independently obtained by Raphael Steiner [87].
Theorem 8.5.1

For every hero H, locally tournaments oriented graphs with no induced copy of H
have bounded dichromatic number. More precisely, it is bounded by at most twice
the maximum dichromatic number of a H-free tournament.

Proof : Let k be the maximum dichromatic number of an H-free tournament. Let x be any
vertex. By induction on the number of vertices, we know that the oriented graph induced
by the set of non-neighbours N = V \ ({x} ∪ x+ ∪ x−) is 2k colourable so we first
properly colour N with colours in {1, . . . , 2k}. Now since x+ and x− are tournaments,
they are k-colourable by hypothesis. We can thus use colours {1, . . . , k} for a proper
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dicolouring of x−, and colours {k+ 1, . . . , 2k} for a proper dicolouring of x+, give x

any colour, and it is not difficult to check that this gives a valid 2k-dicolouring of D (the
main fact to observe is that there are no arcs from x− to N, and from N to x+).

The purpose of this section is to use our techniques to give a proof of the following
structural theorem for the class of locally semicomplete digraphs. As already men-
tioned in the introduction, such a theorem is given in [19] (see Theorem 3.12), but
our theorem is much simpler to state and might have some interesting applications.
In fact, the theorem of [19] has the same first two cases below, but their third case
(called evil in Chapter 6 of the monograph [20]) has a more complicated description
that seems to us less easy to handle for applications. We propose some illustrations
after the proof of the theorem.

Remember that a universal vertex is a vertex x such that x+ = x− = V(D) \ {x}.
Theorem 8.5.2

Let D be a connected locally semicomplete digraph, then either:
— D is semicomplete with a universal vertex.
— There exists a partition of V(D) into k ⩾ 2 subsets each inducing strong con-

nected semicomplete digraphs such that the digraph obtained by contracting
every member of the partition is a round oriented graph.

— there exists a partition of V(D) into four sets E, F, G and H such that:
— F and H are non empty, and one of E and G is non empty.
— D[E], D[F], D[G] and D[H] are semicomplete;
— E strictly out-dominates F, F out-dominates G, G out-dominates H and

H strictly out-dominates E.
— ∀x ∈ G, x+ ∩ E ̸= ∅ and x− ∩ E ̸= ∅

For this proof, we need to relax the notion of hub of the previous section: a set
X ⊆ V is called a weak hub if there exists a vertex which strictly in-dominates or
strictly out-dominates X. The "strictly" part of this definition was implicit before for
hubs since we were in the context of oriented graphs. A weak hub X is said to be
mixed if there exist vertices x /∈ X and u, v ∈ X such that both xu, vx are arcs.

We split the proof of Theorem 8.5.2 into two parts depending on the existence of a
maximal weak hub that is mixed. When there are no such subsets, the proof will have
many similarities with our proof of Theorem 8.3.2.

Lemma 8.5.3. Let D be a connected locally semicomplete digraph such that no max-
imal weak hub is mixed. Then either D is semicomplete with a universal vertex, or
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G

F

E

H

Figure 20 – The structure in the third case of Theorem 8.5.2

there exist k ⩾ 2 disjoint sets X1, X2 . . . Xk of vertices such that D[Xi] is strong for
i = 1, . . . , k, and the digraph obtained by contracting every Xi is a round oriented
graph.

Proof of Lemma 8.5.3 : Let D be a connected locally semicomplete digraph and assume
D is not semicomplete with a universal vertex. We first prove that maximal weak hubs
form a partition of V(D).

Claim 8.5.3.1. Let X and Y be two distinct maximal weak hubs. Then X∩ Y = ∅.
Proof: Assume X and Y contradict the claim. If there exists x /∈ Y which strictly

in-dominates X, then there is at least one arc to x from a vertex of X∩ Y ̸= ∅ and since
Y is not mixed, there is no arc from x to Y. As D[Y] is strongly connected, Lemma
8.3.3 implies that x strictly in-dominates Y. But then X ∪ Y would be a weak hub,
contradicting the maximality of X. If now there exists x ∈ Y which strictly in-dominates
X, then consider any arc ab where a ∈ X ∩ Y and b ∈ X \ Y, which must exist since
D[X] is strong. But now Y is mixed because of the arcs ab and bx, a contradiction. So
X is not strictly in-dominated and is similarly it cannot be strictly out-dominated.

Claim 8.5.3.2. Every vertex belongs to some maximal weak hub.

Proof: Let u be a vertex of D. It suffices to prove {u} is a weak hub. Assume by
contradiction that this is not the case. By the definition of weak hub this forces u+ = u−.
If u+ = V \ {u}, D is semicomplete with a universal vertex, a contradiction. If not, as
D is connected, there exist vertices v ∈ u+ and w /∈ u+ such that vw ∈ A or wv ∈ A.
But then, as u− = u+, u and w are both in-neighbours or both out-neighbours of v,
implying w ∈ u− = u+, a contradiction.

The next claim describes the structure of the arcs linking maximal weak hubs.
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Claim 8.5.3.3. Let X and Y be two distinct maximal weak hubs. Then either X strictly
in-dominates Y, or X strictly out-dominates Y, or there is no arc between X and Y.

Proof: Assume that there exists x in X and y in Y such that xy ∈ A(D). By Lemma
8.3.3 applied to H = X and z = y, and because X is not mixed by hypothesis, we have
that y strictly in-dominates X. But now by applying the same Lemma to the digraph
obtained from D by reversing all arcs (which is still locally out-semicomplete since D

is locally semicomplete), we get that Y strictly in-dominates X.
Let us now consider a partition of V into maximal weak hubs X1, X2 . . . Xk and let

D ′ the digraph obtained by contracting every set in the partition. By Claim 8.5.3.3,
D ′ is a locally tournament oriented graph. Moreover, the in-neighbourhood (resp. the
out-neighbourhood) of any vertex x ∈ V(D ′) is acyclic. Indeed, if there were any such
cycle C on vertices of D ′ corresponding to weak hubs Xi1 , Xi2 . . . Xiℓ with ℓ ⩾ 2, then
∪ℓj=1Xij would induce a weak hub in-dominated (resp. out-dominated) by every vertex
of the weak hub corresponding to x in D, a contradiction to the maximality of the Xi.
Due to Theorem 8.2.1, D ′ is a round digraph.

To prove Theorem 8.5.2 it remains to prove the following lemma which deals with
the case where there exists a maximal weak hub that is mixed.

Lemma 8.5.4. Let D be a connected locally semicomplete digraph such that there
exists a maximal weak hub which is mixed. Then there exists a partition of V(D) into
four sets E, F, G and H such that:

— E and G are non empty, and one of F and H is non empty.
— D[E], D[F], D[G] and D[H] are semicomplete;
— E strictly out-dominates F, F out-dominates G, G out-dominates H and H

strictly out-dominates E.
— For all x ∈ G, x+ ∩ E ̸= ∅ and x− ∩ E ̸= ∅

Proof of Lemma 8.5.4 : Let X be a maximal weak hub which is mixed. Set E := X and:

G := XM = {u /∈ X | ∃a, b ∈ X such that ua ∈ A, bu ∈ A}

H := XIN = {u /∈ X | ∃a ∈ X such that ua ∈ A} \XM

F := XOUT = {u /∈ X | ∃a ∈ X such that au ∈ A} \XM

XNO = V \ (X∪XIN ∪XOUT ∪XM) = {u ∈ V | ∀v ∈ X,uv /∈ A and vu /∈ A}.

We are going to prove that XNO = ∅ and that E, F,G,H satisfy the output of the
theorem.
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Since X is strong, by Lemma 8.3.3, X strictly out-dominates XOUT and due to the
same lemma applied to the digraph obtained by reversing all arcs of D, we have that
XIN strictly out-dominates X.

Since X is assumed to be a weak hub that is mixed, we have that XM and X are
non-empty and one of XIN or XOUT is non-empty.

Let u ∈ XOUT and v ∈ XM and let us prove that uv ∈ A(D). By definition of XM,
there exists w ∈ X such that wv ∈ A(D). As wu ∈ A(D), there must be an arc between
u and v. If vu ∈ A(D), then X ∪ {v} is a weak hub, contradicting the maximality of X.
So uv ∈ A(D) and thus XOUT out-dominates XM. Similarly, XIN in-dominates XM.

Now, since D is semicomplete and each of X, XIN, XOUT and XM are included in the
out-neighbourhood of some vertex, we get that, D[X], D[XIN], D[XOUT ] and D[XM] are
semicomplete.

It remains to show that XNO = ∅. In order to do so, we are going to prove that
there is no arc between XNO and X ∪ XIN ∪ XOUT ∪ XM, contradicting the fact that D
is connected. There cannot be any arc uv with u ∈ XM ∪ XIN and v ∈ XNO as any
such u has an out-neighbour in X and this would create an induced S+2 . Similarly, there
cannot be an arc uv with u ∈ XNO and v ∈ XM ∪XOUT as such a v has an in-neighbour
w ∈ X and this would create an induced S−2 . Let w ∈ XM. If there is an arc uv with
u ∈ XOUT and v ∈ XNO, then {u, v,w} induces S+2 . If there is an arc uv with u ∈ XNO

and v ∈ XIN, then {u, v,w} induces S−2 . Altogether, we get that there is no arc between
XNO and X∪XIN ∪XOUT ∪XM as announced.

Two short applications of Theorem 8.5.2

Let us mention here some applications of the previous theorem.
A 2-king in a digraph is a vertex that can reach every other vertex by a directed

path of length at most 2. In [91] it is proved that a locally semicomplete digraph that
is not a blow-up of a round oriented graph (that is, not in the second case of Theorem
8.5.2) has a 2-king. As we show now, this is a direct consequence of Theorem 8.4.2.
Indeed, when D is semicomplete, it is easy to see that a vertex x of maximum out-
degree satisfies that every vertex in x− is either in x+ or has an in-neighbour in x+,
and therefore x is a 2-king. And if D is described by the third case, we distinguish
two cases.

— If H is non empty, then we claim that a vertex x in G that is a 2-king in D[G]

(which exists by the previous argument) is a 2-king in D. Indeed, every vertex
in H is in x+, and since there is all arcs from H to E, there is a directed path
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of length at most 2 from x to each vertex of E. Finally, since x has at least one
out-neighbour in E and there is all arcs from E to F, there is a directed path of
length 2 from x to each vertex in F.

— If H is empty, then F is not and in that case we take any vertex that is a 2-king
in E, and it is clearly a 2-king of D.

Another topic is pancyclicity, that is the property that a digraph contains a directed
cycle for all possible lengths between 3 and the number of vertices. We do not write
the proof here but Theorem 8.5.2 implies the result of [19] characterizing pancyclicity
for locally semicomplete digraphs, since again the only non-easy case is when the
digraph is neither semicomplete nor the blowup of a round digraph, in which case it
follows without too much effort because of the simplicity of this third case compared
to the one of Theorem 3.2 in [19].

8.6 P E R S P E C T I V E S

In the context of Conjecture 8.4.1, it would be interesting to prove that {H, S+2 } is
heroic for every hero H. We prove it in the case where the hero consists of a

−→
C3 plus

a vertex dominating it. In order to extend this partial result, one idea could be to use
the structure theorem for the heroes of Berger et al. mentioned in Chapter 5. Let us
restate this theorem.
Theorem 8.6.1 ([25])

A tournament is a hero if and only if it can be constructed by the following induc-
tive rules:

— K1 is a hero.
— If H1 and H2 are heroes, then H1 ⇒ H2 is also a hero.
— If H is a hero, then for every k ⩾ 1, the tournaments C⃗3(H, TTk, K1) and

C⃗3(TTk, H, K1) both are heroes.

In the light of this theorem, a first step to prove that {H, S+2 } is heroic for every
hero H would be to show that, given two heroes H1 and H2, if {Hi, S

+
2 } is heroic for

i = 1, 2, then {H1 ⇒ H2, S
+
2 } is also heroic. The case H1 = K1 is solved in the

prepublication [87] mentioned in the introduction, but we think that a decomposition
theorem for locally out-tournament oriented graphs, in the spirit of Theorem 8.5.2
would be of great help for the general case

Finally, we wonder whether Theorem 8.5.2 can be applied to prove some open
problems about locally semicomplete digraphs or locally tournament oriented graphs.
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One such problem is the famous Second Neighbourhood Conjecture due to Seymour,
which is known for tournaments but not for locally tournament oriented graphs. The
first two cases of Corollary 8.5.2 can be dealt with without too much difficulty, but
we were alas not able to deal with the last one.
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D I C H RO M AT I C N U M B E R

This chapter is built upon a joint work
with Pierre Aboulker, Pierre Charbit

and Stéphan Thomassé, published in [6].

In this chapter, we prove that
−→
P 6 is a hero in triangle-free digraphs.

9.1 I N T RO D U C T I O N

In this chapter, we are interested in the following conjecture:
Conjecture 9.1.1 ([10])

Let
−→
F be an oriented forest and k an integer. −→χ (Forbind(

−→
F , TTk)) is finite.

Which is equivalent to the following one:
Conjecture 9.1.2 ([10])

Let
−→
T be an oriented tree and k be an integer. The class of oriented graphs with no

induced copy of
−→
T and clique number at most k has bounded dichromatic number.

We prove the following result, which corresponds to the above conjecture when−→
T =

−→
P 6 and k = 2.

Theorem 9.1.3

For every D ∈ Forbind(
−→
P 6) with ω(D) ⩾ 2, −→χ (D) ⩽ 382.

Note that we did not try to optimize the bound.
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9.2 P R E L I M I N A R I E S

Let D be a digraph. For X ⊂ V(D) we define N+(X) = {y ∈ V(D) \ X, ∃x ∈
X such that xy ∈ A(D)} and N−(X) = {y ∈ V(D) \ X, ∃x ∈ X such that yx ∈
A(D)}. We say that D is triangle-free if ω(D) ⩽ 2.

A trail of a digraph D is a sequence of vertices x1x2 . . . xp such that xixi+1 ∈
A(D) for each i < p and each arc is used once (but vertices can be used several
times). It is closed if x1 = xp and its length is its number of arcs. We say odd closed
trail for a closed trail of odd length.

A set of vertices X is dipolar if for every x ∈ X, N+(x) ⊆ X or N−(x) ⊆ X. This
notion was first introduced in [10] under the name "nice set" and has been renamed
"dipolar set" in [36]. The main tool using dipolar sets is the following lemma. We
include its proof because it is short and enlightening for people unfamiliar with the
dichromatic number.

Lemma 9.2.1 (Lemma 17 in [10]). Let C be a class of digraphs closed under taking
induced subdigraph. Suppose that there exists a constant c such that each digraph
D ∈ C has a dipolar set S such that −→χ (S) ⩽ c. Then −→χ (C) ⩽ 2c.

Proof : Let D ∈ C be a minimal counter example, that is: −→χ (D) = 2c+ 1 and for every
proper subdigraph H of D, −→χ (H) ⩽ 2c. By the hypothesis, D admits a dipolar set S,
such that −→χ (S) ⩽ c. Set S+ = {x ∈ S | N−(x) ⊆ S} and S− = {x ∈ S | N+(x) ⊆ S}.
By definition of a dipolar set, S = S+ ∪ S−.

The key observation is that any directed cycle that intersects S and V(D)\S intersects
both S+ and S−. Hence, by the minimality of D, we can dicolour V(D) \ S with 2c

colours. We can then extend this dicolouring to D by using colours 1, . . . , c for S+ and
c+ 1, . . . , 2c for S− \ S+.

The strategy to prove our result is to show that every digraph in our class has a
dipolar set with a dichromatic number at most 191 and then apply Lemma 9.2.1. The
next two results give simple techniques to bound the dichromatic number of a digraph,
they will be extensively used to prove that the dichromatic number of some dipolar
set is bounded. The first one is probably well known but we don’t have any reference
for it, the proof is very short.

Lemma 9.2.2. If a digraph D does not contain odd directed cycles as subdigraphs,
then −→χ (D) ⩽ 2.



9.2 P R E L I M I N A R I E S 153

Proof : Let D be a digraph with no odd directed cycle and since the dichromatic number of
a digraph is the maximum of the dichromatic number of its strong components, we can
assume without loss of generality that D is strongly connected. In that case, we prove
that the underlying graph G of D is in fact bipartite. Assume by contradiction G contains
an odd cycle C = c1 → c2 → . . . → c2k+1 → c1. For i = 1, . . . , 2k+ 1, let Pi be a
shortest directed path from ci to ci+1 (indices being taken modulo 2k+ 1). Observe that
either Pi = cici+1, or ci+1ci ∈ A(D), in which case Pi has odd length, for otherwise
Pi ∪ {ci+1ci} is an odd directed cycle. Hence the union of the Pi for i = 1 . . . 2k+ 1

forms a closed odd trail, which contains an odd directed cycle, a contradiction.

The next result is the dichromatic version of the celebrated Gallai-Roy-Vitaver
theorem asserting that the chromatic number is upper-bounded by the largest length
of a directed path. In a nutshell: the dichromatic number is upper-bounded by the
largest length of a directed path of some feedback arc set.
Proposition 9.2.3

Let D be a digraph. Given a total ordering of the vertices of D, we say that an arc
xy is forward if x precedes y in this ordering, and backwards otherwise. The two
following propositions are equivalent

— −→χ (D) ⩽ k

— There exists an ordering of the vertices of D such that there exists no directed
path on k+ 1 vertices consisting only of backward arcs.

Proof : One direction is easy: if −→χ (D) ⩽ k then there exists a partition (C1, C2, . . . Ck)

of V(D) with Ci inducing an acyclic digraph. We construct an order on V(D) by putting
all vertices of Ci before all vertices of Ci+1 for each i and within each class we use a
topological sort. It is clear that in the resulting order, there can be no patch on more than
k vertices where all arcs go backwards since a backward arc goes from one class to a
previous one.

For the converse direction, assume that D has an ordering on its vertices such that
there exists no directed path on k+ 1 vertices consisting only of backward arcs and let us
prove that D is k-dicolourable. For every x ∈ V(D), define f(x) the maximum number
of vertices in a path consisting only of backward arcs and ending in x. By definition
1 ⩽ f(x) ⩽ k. Define Ci = f−1(i) and let us prove that Ci does not contain any
backward arc. Assume by contradiction xy is such an arc. Then there exists a path on i

vertices ending in x consisting only of backward arcs, which implies that f(y) ⩾ i+ 1,
a contradiction. So each Ci induces an acyclic digraph, and thus −→χ (D) ⩽ k.

The last lemma of this section is used to find induced directed paths.
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Lemma 9.2.4. Let D be a triangle-free digraph, C a (not necessarily induced) odd
directed cycle of D and a ∈ N(C). Then there exists consecutive vertices b→ c→ d

of C such that
— either a→ b→ c→ d is an induced

−→
P 4,

— or b→ c→ d→ a is an induced
−→
P 4,

— or a→ b→ c→ d is a C4 (in particular, a ∈ N+(C)∩N−(C)).

Proof : Assume a ∈ N−(C). Let us denote by x1, . . . , x2k+1 the vertices of C (i.e. ∀i ⩽
2k, xixi+1 ∈ A(D) and x2k+1x1 ∈ A(D)). Assume without loss of generality that
ax1 ∈ A(D). Let 1 ⩽ p ⩽ k be the maximum integer such that ax2p+1 ∈ A(D). Since
the digraph is triangle-free, ax2k+1 /∈ A(D), so p ⩽ k. It is straightforward to see that
b = x2p+1, c = x2p+2, d = x2p+3 satisfies either the first or third item of the lemma.
By reversing the arcs of the digraph, the same proof works if a ∈ N+(C).

We will often use this lemma the following way: if a ∈ N+(C) \N−(C) (resp.
a ∈ N−(C) \N+(C)), then the first (resp. the second) output holds.

9.3 P RO O F O F T H E O R E M 9 . 1 . 3

For a subset X of vertices, we define recursively the sets N+
k (X), N

−
k (X) and Nk(X)

by N+
0 (X) = N−

0 (X) = N0(X) = X, and for k ⩾ 1:

N+
k (X) = N+(N+

k−1(X)) \
⋃
i<k

Ni(X)

N−
k (X) = N−(N−

k−1(X)) \
⋃
i<k

Ni(X)

Nk(X) = N+
k (X)∪N

−
k (X)

We gather in the following claim several straightforward facts that we will use in the
proof.

Claim 9.3.0.1. For any X ⊂ V , the following hold
1. N+

1 (X) = N+(X), N−
1 (X) = N−(X) and N1(X) = N+(X)∪N−(X)

2. There are no arcs between X and Nk(X) for k > 1.
3. If x ∈ Nk−1(X), then either N+(x) ⊆

⋃
i⩽kNi(X) or N−(x) ⊆

⋃
i⩽kNi(X).

4. If x ∈ N+
k (X) (resp N−

k (X)), there exists a directed path x0x1 . . . xk (resp.
xkxk−1 . . . x0) such that xk = x and xi ∈ N+

i (X) for every i ⩾ 0.
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Items 1), 2) and 3) follow from the definition and 4) is easy to prove by induction
on k.

Let now D be a triangle-free digraph in Forbind(
−→
P 6). Let C = x1x2 . . . x2k+1x1

be a (not necessarily induced) odd directed cycle of D of minimum length (we may
assume it exists by Lemma 9.2.2). During the proof, for simplicity, we write C for
V(C), D[C] for D[V(C)] and Nk(C) for Nk(V(C)).

We are going to prove that the set

S = C∪N(C)∪N2(C)∪N3(C)

is dipolar and has dichromatic number at most 191, which implies Theorem 9.1.3 by
Lemma 9.2.1.

Claim 9.3.0.2. S is dipolar. Moreover, −→χ (N3(C)) ⩽ 2.

Proof of Claim : To prove that S is dipolar, we need to prove that for every vertex
x in S, either N+(x) or N−(x) is contained in S. Note that by Claim 9.3.0.1 item 3,
this is trivial if x ∈ C∪N1(C)∪N2(C).

Assume now that x ∈ N+
3 (C) and let us prove that N+(x) ⊆ N(C)∪N2(C), which

will imply both parts of the claim since this proves that N+
3 (C) is an independent set.

By Claim 9.3.0.1 item 4, there exists a directed path x0 → x1 → x2 → x3, where
x3 = x and xi ∈ N+

i (C). If x1 ∈ N+(C) \N−(C), then, by Lemma 9.2.4, there
exists a, b, c ∈ C such that abcx1 is an induced

−→
P 4. Since there is no arc between C

and N2(C)∪N3(C) (by Claim 9.3.0.1 item 2) and D is triangle-free, a→ b→ c→
x1 → x2 → x3 is an induced

−→
P 6, a contradiction.

So we can assume x1 ∈ N+(C) ∩N−(C). Consider y ∈ N+(x), and let us prove
that y ∈ N(C) ∪N2(C). Let t be an in-neighbour of x0 in C and observe that
t → x0 → x1 → x2 → x3 → y is a

−→
P 6 and the only way for it not to be induced

(because of (Claim 9.3.0.1 item 2)) is that y is adjacent with one of {t, x0, x1}. If
y is adjacent with t or x0, then y ∈ N(C). If y is adjacent with x1, and since
x1 ∈ N+(C) ∩N−(C), we get that y ∈ N2(C). We thus have proven that y ∈
N(C) ∪N2(C). Similarly, if x ∈ N−

3 (C), then N−(x) ⊆ N(C) ∪N2(C), which
concludes the proof of this claim.

□

Claim 9.3.0.3. −→χ (D[C]) ⩽ 3.



156 (
−→
P 6 , T R I A N G L E) - F R E E D I G R A P H S H AV E B O U N D E D D I C H RO M AT I C N U M B E R

Proof of Claim : By minimality of C, removing a vertex from C yields a digraph
with no odd directed cycle, which thus has a dichromatic number at most 2 by
Lemma 9.2.2. □

Claim 9.3.0.4. −→χ (N+(C) \N−(C)) ⩽ 4 and −→χ (N−(C) \N+(C)) ⩽ 4.

Proof of Claim : Let us prove that −→χ (N+(C) \N−(C)) ⩽ 4. We first prove that
N+(x1) ∪N+(x2) intersects all odd directed cycles of N+(C) \N−(C). Suppose
that it is not the case, and let C ′ be such an odd directed cycle. Let i ⩾ 3 be minimum
such that xi has an out-neighbour in C ′ (so that x1, . . . , xi−1 don’t). Since C ′ ⊂
N+(C) \N−(C), xi does not have an in-neighbour in C ′, so by Lemma 9.2.4 applied
to C ′, there are 3 consecutive vertices a, b, c of C ′, such that xi → a→ b→ c is an
induced

−→
P 4. By the choice of i, we then have that xi−2 → xi−1 → xi → a→ b→ c

is an induced
−→
P 6, a contradiction. Now, N+(C) \N−(C) can be partitioned into two

stable sets and a digraph with no odd directed cycle, and thus be 4-dicoloured. By
directional duality, −→χ (N−(C) \N+(C)) ⩽ 4. □

Claim 9.3.0.5. −→χ (N+
2 (C) \N

−
2 (C)) ⩽ 2 and −→χ (N−

2 (C) \N
+
2 (C)) ⩽ 2.

Proof of Claim : We prove that −→χ (N+
2 (C) \N

−
2 (C)) ⩽ 2. Assume by contradiction

this is not the case so that by Lemma 9.2.2 we get an odd directed cycle C ′ in N+
2 (C)\

N−
2 (C) . Let u be a vertex in N+(C)∩N−(C ′), which is non empty by definition of

N+
2 (C).
If u ∈ N+(C) \N−(C), then by Lemma 9.2.4, there exist a, b, c ∈ C such that

a → b → c → u is an induced
−→
P 4, which along with a vertex v ∈ N+(u) ∩ V(C ′)

and the out-neighbour of v in V(C ′) forms an induced
−→
P 6, a contradiction (remember

that by Claim 9.3.0.1 Item 2, there is no arc between C and C ′).
Thus u ∈ N+(C) ∩N−(C) and since V(C ′) is disjoint from N−

2 (C), u has no
in-neighbour in V(C ′). Hence, by Lemma 9.2.4 applied on C ′, there exist a, b, c ∈
V(C ′) such that u → a → b → c is an induced

−→
P 4, which along with any v ∈

N−(u)∩C and the in-neighbour of v in C forms an induced
−→
P 6, a contradiction. □

Claim 9.3.0.6. −→χ (N+(C) ∩N−(C)) ⩽ 30. Moreover, if for every x ∈ C, both
N+

2 (x) and N−
2 (x) are stable sets, then −→χ (N+

2 (C)∩N
−
2 (C)) ⩽ 30.

Proof of Claim : The same proof works for the two assertions of the claim. Let
ℓ ∈ {1, 2} and observe that, by hypotheses (triangle-free for ℓ = 1, or the assumption
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of the second sentence for ℓ = 2), for every x ∈ C, both Nℓ+(x) and Nℓ−(x) are
stable sets.

Let X = (Nℓ+(C) ∩ Nℓ−(C)) \ Nℓ({x1, . . . , x6}). It is enough to prove that
−→χ (X) ⩽ 30− 12 = 18.

For each vertex v ∈ X, choose (arbitrarily) a vertex xi (resp. xj) in C such that
there is a directed path of length l from v to xi (resp. from xj to v). Set out(v) = i

and in(v) = j so that we define two functions out and in from X to {1, . . . , 2k+ 1}.
In the case where ℓ = 2, let p+v (resp. p−v ) be a vertex such that v→ p+v → xout(v)

(resp. xin(v) → p−v → v). In the rest of the proof, v → p+v → xout(v) is understood
as v→ xout(v) in the case where ℓ = 1.

For i ∈ [0, 5], let Xi = {v ∈ X | out(v) = i mod 6} and then define Xi,⩾ = {v ∈
Xi | out(v) ⩾ in(v)} and Xi,< = {v ∈ Xi | out(v) < in(v)}. It is enough to prove
that −→χ (Xi,⩾) ⩽ 2 and −→χ (Xi,<) ⩽ 1 for i = 0, . . . , 5.

So now i is fixed and we define a total order≺ on Xi the following way: we say first
that u ≺ v when out(u) < out(v) and then extend arbitrarily this partial ordering
to a total ordering of Xi.

We first prove that −→χ (Xi,⩾) ⩽ 2 using Proposition 9.2.3 applied to the reversal of
≺ defined above. Suppose then by contradiction that there exist a, b, c ∈ Xi,⩾ such
that a ≺ b ≺ c and ab, bc ∈ A(D). Since Nℓ−(x) is a stable set for every x ∈ C,
out(a) ̸= out(b) and out(b) ̸= out(c) and thus

out(c) ⩾ 6+ out(b) ⩾ 12+ out(a) ⩾ 12+ in(a)

If in(a) has the same parity as out(a) (and thus as out(b) and out(c)), then x1 →
x2 → · · · → xin(a) → p−a → a→ b→ c→ p+c → xout(c) → · · · → x2k+1 → x1 is
an odd closed trail (it does need to be a directed cycle because p−a = p+c is possible)
and otherwise, x1 → x2 → · · · → xin(a) → p−a → a → b → p+b → xout(b) →
· · · → x2k+1 → x1 is an odd directed cycle. In both cases, we get an odd directed
trail that has strictly fewer vertices than C, and since an odd closed trail contains an
odd directed cycle, we get our contradiction. Thus −→χ (Xi,⩾) ⩽ 2.

We now prove that −→χ (Xi,<) ⩽ 1. Suppose that there exists a, b ∈ Xi,< such that
b ≺ a and ab ∈ A(D). Thus out(b) + 6 ⩽ out(a) < in(a). If out(a) and in(a)

do not have the same parity, then xout(a) → xout(a)+1 → · · · → xin(a) → p+a →
a → p−a → xout(a) is an odd closed trail. Otherwise out(a) and thus out(b) have
the same parity as in(a), and then xout(b) → · · · → xin(a) → p−a → a → b →
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p+b → xout(b) is an odd directed cycle. In both cases, it has strictly fewer vertices
than C, a contradiction. Thus −→χ (Xi,<) ⩽ 1 by Proposition 9.2.3. □

Let
−→
C3,2 be the digraph with vertices u, v1, v2, w1, w2 and arcs uv1, v1v2, v2w2, uw1, w1w2.

Observe that if G ∈ Forbind(
−→
C3,2), then for every x ∈ V(G), N+

2 (x) and N−
2 (x)

are stable sets. Hence, by the previous claims (all of them), we get that for every
triangle-free digraph G ∈ Forbind(

−→
P 6,
−→
C3,2), the set Q∪N(Q)∪N2(Q)∪N3(Q),

where Q is an odd directed cycle of G of minimum length, is dipolar and has a
dichromatic number at most 3+ 4+ 4+ 2+ 2+ 1+ 1+ 30+ 30 = 77. Hence, by
Lemma 9.2.1 we get that:

Claim 9.3.0.7. Triangle-free digraphs in Forbind(
−→
P 6,
−→
C3,2) have dichromatic num-

ber at most 144.

We are now able to prove the last bit of the proof.

Claim 9.3.0.8. −→χ (N+
2 (C)∩N

−
2 (C)) ⩽ 144.

Proof of Claim : By Claim 9.3.0.7, we may assume that N+
2 (C) ∩N

−
2 (C) contains

−→
C3,2 as an induced subdigraph. Thus there exists u, v1, v2, w1, w2 ∈ N+

2 (C) ∩
N−

2 (C) such that uv1, uw1, v1v2, w1w2, v2w2 ∈ A(D). Moreover, there exists
r, s ∈ C, and t ∈ N+(C) such that rs, st, tu ∈ A(D). Now, since r → s →
t → u → v1 → v2 is not induced, t and v2 are adjacent, and since r → s → t →
u → w1 → w2 is not induced, t and w2 are adjacent. Hence t, v2, w2 forms a
triangle, a contradiction. □

Altogether, we get that −→χ (S) ⩽ 3+ 4+ 4+ 30+ 2+ 2+ 144+ 1+ 1 = 191, and
thus −→χ (D) ⩽ 382.
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This chapter is built upon a joint work with Pierre
Aboulker and Raphaël Steiner, published in [8].

In this chapter, we characterize heroes in orientations of chordal graphs.

10.1 I N T RO D U C T I O N

A classical theorem of Dirac [40] states that all chordal graphs can be obtained
by iteratively glueing some complete graphs along cliques (see Section 10.2.1 for a
formal statement). This implies for undirected graph colouring that chordal graphs
are perfect graphs, and thus their chromatic numbers and colouring properties are de-
termined solely by the (largest) cliques contained in them. It is then natural to ask
whether also for the dichromatic number of oriented chordal graphs important charac-
teristics are determined by the largest dichromatic numbers of their subtournaments.
In particular, it is a natural problem to characterise the heroes in oriented chordal
graphs and to see whether they are the same as for tournaments.

In this chapter, we find surprising answers to the above questions. First, there
are very few heroes in oriented chordal graphs and as our main contribution, we
completely describe these digraphs, as follows.
Theorem 10.1.1

A digraph H is a hero in oriented chordal graphs if and only if H is a transitive
tournament or isomorphic to C⃗3(1, 1, k) for some integer k ⩾ 1.

Secondly, our constructions in the proof of the above characterisation exhibit ori-
ented chordal graphs with arbitrarily large dichromatic numbers all of whose subtour-
naments are 2-colourable, showing that in contrast to chromatic number the dichro-

159
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matic number of an oriented chordal graph heavily depends on its global structure
and not only on the cliques contained in it.

We denote by C⃗3 the directed cycle on three vertices, also called directed triangle
(observe that C⃗3 = C⃗3(1, 1, 1)). It is easy to see that a hero in tournaments is either
a transitive tournament, or isomorphic to C⃗3(1, 1, k) for some integer k ⩾ 1, or it
contains one of the heroes C⃗3(1, 2, 2), K1 ⇒ C⃗3 or C⃗3 ⇒ K1 as a subtournament.
Moreover, since reversing all arcs of a (C⃗3 ⇒ K1)-free oriented chordal graph results
in a (K1 ⇒ C⃗3)-free oriented chordal graph and does not change the dichromatic
number, proving that C⃗3 ⇒ K1 is not a hero in oriented chordal graphs implies that
K1 ⇒ C⃗3 is not either. Hence, to prove Theorem 10.1.1, it will be enough to prove
the following:

— Transitive tournaments and C⃗3(1, 1, k) for k ⩾ 1 are heroes in oriented chordal
graphs. This is done in Section 10.2.2.

— C⃗3(1, 2, 2) and C⃗3 ⇒ K1 are not heroes in oriented chordal graphs. This is
respectively done in subsections 10.2.3.1 and 10.2.3.2.

10.2 P RO O F S

10.2.1 A few words on chordal graphs

Chordal graphs have been studied for the first time in the pioneer work of Dirac [40]
who proved that every chordal graph G is either a complete graph, or contains a clique
S such that G \ S is disconnected. This easily implies that all chordal graphs can be
obtained by glueing complete graphs along cliques. From this point of view, it is
natural to try to generalize results on tournaments to orientations of chordal graphs.

In this chapter, we will use the two following well-known properties of chordal
graphs. The first one formalizes the notion of ‘glueing along a clique’.

Lemma 10.2.1. [40] Let G1 and G2 be two chordal graphs such that V(G1)∩V(G2)

induces a complete graph both in G1 and G2. Then their union is a chordal graph.

A vertex is simplicial if its neighbourhood induces a complete graph.

Lemma 10.2.2. [40] Every chordal graph has a simplicial vertex.
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10.2.2 C⃗3(1, 1, k) and transitive tournaments are heroes in oriented chordal
graphs

Theorem 10.2.3 (Stearns, [84])

For each integer n ⩾ 1, a tournament with at least 2n−1 vertices contains a transi-
tive tournament with n vertices.

In the following, we define the triangle degree of a vertex x in a digraph G as the
maximum size of a collection of directed triangles that pairwise share the common
vertex x but no further vertices.

Lemma 10.2.4. Every vertex of a C⃗3(1, 1, k)-free tournament has triangle degree
less than 22k−2.

Proof : Let G be a C⃗3(1, 1, k)-free tournament and x a vertex of G. Assume for contra-
diction that x has triangle degree at least 22k−2, that is, there exist pairwise distinct
vertices a1, b1, . . . , a22k−2 , b22k−2 such that x → ai → bi → x. By Theorem 10.2.3
we can find a transitive tournament T in G[{a1, . . . , a22k−2}] of order at least 2k − 1.
Up to renaming the vertices, we may assume that T = G[{a1, . . . , a2k−1}] and that
a1, . . . , a2k−1 is the topological ordering of T . Then look at b2k−1. Set b+2k−1 ∩ T = T+

and b−2k−1 ∩ T = T− and observe that V(T) = T+ ∪ T− since we are in a tournament. If
|T+| ⩾ k, then T+ together with b2k−1 and a2k−1 contains a C⃗3(1, 1, k), a contradiction.
So |T+| ⩽ k− 1. If |T−| ⩾ k, then T− together with b2k−1 and x contains C⃗3(1, 1, k), a
contradiction. So |T+| ⩽ k− 1. Hence, |V(T)| ⩽ 2k− 2, a contradiction.

Theorem 10.2.5

Transitive tournaments and C⃗3(1, 1, k) are heroes in oriented chordal graphs.
More precisely, TTk-free oriented chordal graphs have dichromatic number at
most 2k−1 − 1 and C⃗3(1, 1, k)-free oriented chordal graphs have dichromatic
number at most 22k−2.

Proof : A TTk-free oriented chordal graph has no subtournament of order at least 2k−1− 1

by Theorem 10.2.3, and since chordal graphs are perfect graphs, its underlying graph
has chromatic number at most 2k−1 − 1 and thus dichromatic number at most 2k−1 − 1.

We now prove that C⃗3(1, 1, k)-free oriented chordal graphs have dichromatic num-
ber at most 22k−2. We proceed by induction on the number of vertices. Let G be a
C⃗3(1, 1, k)-free oriented chordal graph. Let x be a simplicial vertex of the underlying
graph of G. Note that the triangle degree of x in G is equal to the triangle degree of x in
the subtournament G[{x}∪ x+ ∪ x−], which by Lemma 10.2.4 is less than 22k−2.
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We can then find a dicolouring of G \ x with 22k−2 colours by induction, and since
the triangle degree of x in G is less than 22k−2, there is a colour i ∈ {1, . . . , 22k−2} such
that assigning i to x does not produce a monochromatic directed triangle. We thus get a
dicolouring of G: if there existed a monochromatic directed cycle in this dicolouring of
G, there would also have to exist an induced monochromatic directed cycle, and since
all induced cycles in G have length 3, this cycle would have to be a monochromatic
directed triangle. However, such a triangle does not exist, neither through x nor in G \ x

(by inductive assumption).

10.2.3 Constructions

10.2.3.1 C⃗3(1, 2, 2) is not a hero in orientations of chordal graphs

In this subsection, we present a construction of oriented chordal graphs with arbi-
trarily large dichromatic number but containing no copy of C⃗3(1, 2, 2).
Theorem 10.2.6

C⃗3(1, 2, 2) is not a hero in oriented chordal graphs.

Proof : We inductively construct a sequence (Gk)k∈N of digraphs such that for each k ⩾ 1,
the digraph Gk is an orientation of a chordal graph with no copy of C⃗3(1, 2, 2) satisfying
χ⃗(Gk) = k.

Let G1 be the digraph on one vertex, and having defined Gk, define Gk+1 as follows.
Start with a copy T of TTk+1, and for each arc e = uv of T , create a distinct copy Ge

k

of Gk (vertex-disjoint for different choices of the arc e ∈ A(T), and all vertex-disjoint
from T ). Next, for each e = uv ∈ A(T), we add all the arcs vy and yu for every
y ∈ V(Ge

k). This completes the description of the digraph Gk+1.
For every arc e = uv ∈ A(T), consider the underlying graph of Gk+1[{u, v} ∪

V(Ge
k)]. By definition, this graph is obtained from the chordal underlying graph of

Ge
k by adding an adjacent pair of universal vertices. Since the addition of universal

vertices preservers the chordality of a graph, we can see that the underlying graph of
Gk+1[{u, v} ∪ V(Ge

k)] is chordal, for every choice of e. Since T and Gk+1[{u, v} ∪
V(Ge

k)] intersect in the clique {u, v}, we may now repeatedly apply Lemma 10.2.1 to
see that Gk+1 is still an oriented chordal graph.

Next, let us prove that Gk+1 does not contain C⃗3(1, 2, 2). Assume towards a con-
tradiction that Gk+1 contains a copy of C⃗3(1, 2, 2), induced by the set of vertices A ⊆
V(Gk+1). Since the copies Ge

k, e ∈ A(T) of Gk are vertex disjoint and have no connect-
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ing arcs, and since A induces a tournament, A intersects at most one of the vertex sets
of these copies. Let f = xy ∈ A(T) be a fixed edge such that A ⊆ V(T)∪ V(Gf

k).

Since Gf
k is C⃗3(1, 2, 2)-free by inductive assumption, it follows that A intersects V(T)

in at least one vertex. As C⃗3(1, 2, 2) is not acyclic, A is also not fully contained in V(T),
and thus A∩ V(Gf

k) ̸= ∅.
The argument above implies that A∩ V(T) ⊆ {x, y}, as x and y are the only vertices

in V(T) whose neighbourhoods in Gk+1 intersect V(Gf
k). In fact, we must have A ∩

V(T) = {x, y}, for if |A ∩ V(T)| = 1 then either x would form a sink in Gk+1[A] or
y would form a source in Gk+1[A], both of which are impossible, since Gk+1[A] ≃
C⃗3(1, 2, 2) is strongly connected. Note that by definition of Gk+1, every vertex in A \

{x, y} ⊆ V(Gf
k) must form a directed triangle together with the arc xy.

But A induces C⃗3(1, 2, 2) in Gk and there is no arc in C⃗3(1, 2, 2) forming a directed
triangle with every other vertex, as there is no arc from the only vertex of C⃗3(1, 2, 2) of
outdegree 1 to the only vertex of C⃗3(1, 2, 2) of indegree 1, a contradiction. This shows
that Gk+1 is indeed C⃗3(1, 2, 2)-free.

Finally, let us prove that −→χ (Gk) = k+ 1. A (k+ 1)-dicolouring of Gk can easily be
obtained by piecing together individual k-dicolourings of the copies Ge

k, e ∈ A(T) of
Gk and assigning to all vertices in the transitive tournament T a new (k+ 1)th colour not
appearing in the copies. To show that −→χ (Gk+1) > k, assume towards a contradiction
that Gk admits a k-dicolouring c : V(Gk+1) → {1, . . . , k}. Then, since T is a clique on
k+ 1 vertices, there exists a monochromatic arc e = uv. Let i ∈ {1, . . . , k} be such that
c(u) = c(v) = i. Then since −→χ (Gk) = k, the copy Ge

k of Gk glued to uv must use
all k colours in the dicolouring induced on it by c, and in particular, there exists some
w ∈ V(Ge

k) such that c(w) = i. Now, however, the directed triangle x→ y→ w→ x

is monochromatic, a contradiction to our choice of c. This completes the proof that
−→χ (Gk+1) = k+ 1, and hence the proof of the theorem.

10.2.3.2 C⃗3 ⇒ K1 is not a hero in orientations of chordal graphs

All along this subsection, we denote by C the class of (C⃗3 ⇒ K1)-free oriented
chordal graphs. The goal of this subsection is to construct digraphs in C with arbitrar-
ily large dichromatic number.

Lemma 10.2.7. Let G, F ∈ C and let T be a transitive subtournament of G. Then the
digraph K obtained from G and F by adding every arc from T to F is in C.

Proof : Given a graph G, the graph obtained by adding a vertex v adjacent with every
vertex of G results in a chordal graph as, if v lies in an induced cycle, there is an arc
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between v and every other vertex of this cycle, which is thus a triangle. Thus, adding
vertices of T to F one by one, together with all arcs from T to F, returns a chordal
graph F ′. The intersection of V(F ′) and V(G) is T , which is a tournament. Hence, by
Lemma 10.2.1, the union of G and F ′, that is K, is an oriented chordal graph.

Suppose for contradiction that K contains a subgraph H isomorphic to C⃗3 ⇒ K1.
Since G, F ∈ C, H must intersect both G and F and since H is a tournament, it must be
included in T ∪ F. Since there is no arc from F to T , the directed triangle of H cannot
intersect both T and F, and hence must be included in F (as T is a transitive tournament
and thus have no directed triangle). The fourth vertex of H contains the directed triangle
in its in-neighbourhood, and thus must also be in F, a contradiction.

Lemma 10.2.8. Let G ∈ C and let T be a transitive subtournament of G on vertices
{v1, . . . , vn} such that v1, . . . , vn is the topological ordering of T . Then for every
j ∈ {1, . . . , n − 1}, the digraph F obtained from G by adding a vertex x that sees
v1, . . . , vj and is seen by vj+1, . . . , vn is in C.

Proof : By Lemma 10.2.1, F is an oriented chordal graph. Assume for contradiction that
F contains a copy H of K1 ⇒ C⃗3. Since G ∈ C, H must contain x and thus be included
in G[K] where K = V(T) ∪ {x}. Now, observe that x− ∩K, v−i ∩K for i = 1, . . . , j and
v−k ∩ K for k = j+ 1, . . . , n are transitive tournaments. Thus G[K] cannot contain H,
since one vertex in H includes a directed triangle in its in-neighbourhood.

In the following, given a k-colouring c : V(F) → {1, . . . , k} of a digraph F, we
say that a subdigraph of F is rainbow (with respect to c), if its vertices are assigned
pairwise distinct colours.

Lemma 10.2.9. Let G ∈ C such that −→χ (G) = k. There exists a digraph F = F(G) ∈
C with −→χ (F) = k satisfying the following property: For every k-dicolouring of F,
there exists a rainbow transitive tournament of order k contained in F.

Proof : We prove the lemma by showing the following statement using induction on i (the
lemma then follows by setting F := F(k)).

(⋆) For every i ∈ {1, . . . , k}, there exists a digraph F(i) ∈ C such that −→χ (F(i)) = k,
and for every k-dicolouring of F(i), there exists a copy of TTi contained in F(i) which is
rainbow.

The statement of (⋆) is trivially true for i = 1, since we may put F(1) := G, and in
every k-dicolouring of F(1) any single vertex forms a rainbow TT1.
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For the inductive step, let i ∈ {1, . . . , k − 1} and suppose we have established the
existence of a digraph F(i) ∈ C of dichromatic number k such that every k-dicolouring
of F(i) contains a rainbow copy of TTi.

We now construct a digraph F(i+1) from F(i) as follows: Let X denote the set of all
X ⊆ F(i) such that X induces a TTi in F(i). Now, for every X ∈ X create a distinct
copy GX of the digraph G (pairwise vertex-disjoint for different choices of X, and all
vertex-disjoint from F(i)). Finally, for every X ∈ X, add all the arcs xy with x ∈ X and
y ∈ V(GX). Since F(i) ∈ C and GX ∈ C for every X ∈ X, we can repeatedly apply
Lemma 10.2.7 to find that the resulting digraph, which we call F(i+1), is still contained
in C.

Note that by construction, no directed cycle in F(i+1) intersects more than one of the
vertex-disjoint subdigraphs F(i) and (GX|X ∈ X) of F(i+1), and hence, these digraphs
may be coloured independently in every dicolouring of F(i+1). This immediately implies
−→χ (F(i+1)) = max{−→χ (F(i)),−→χ (G)} = k.

To prove the inductive claim, consider any k-dicolouring c : V(F(i+1)) → {1, . . . , k}

of F(i+1). Then by inductive assumption, there exists a rainbow copy of TTi contained
in the subdigraph of F(i+1) isomorphic to F(i). Let X denote its vertex set, and let I ⊆
{1, . . . , k} be the set of i distinct colours used on X. Since i < k and −→χ (GX) = k, there
exists a vertex v ∈ V(GX) such that c(v) /∈ I. Now, the vertex-set X ∪ {v} induces a
rainbow TTi+1 contained in F(i+1), as desired. This proves (⋆) and thus the lemma.

Theorem 10.2.10

The digraph C⃗3 ⇒ K1 is not a hero in oriented chordal graphs.

Proof : We construct a sequence of digraphs (Gk)k∈N such that −→χ (Gk) = k and Gk ∈ C.
Let G1 be the one-vertex-digraph and, having defined Gk, define Gk+1 as follows. Let
Fk := F(Gk) ∈ C be the digraph given by Lemma 10.2.9, such that−→χ (Fk) = k and such
that every k-dicolouring of Fk contains a rainbow copy of TTk.

Let T denote the set of transitive tournaments which are subdigraphs of Fk. Now, for
each transitive subtournament T ∈ T, add a copy FTk of Fk (vertex-disjoint for different
choices of T , and all vertex-disjoint from Fk). Next, for every T ∈ T, add all the arcs xy
with x ∈ V(T) and y ∈ V(FTk). Finally, for every choice of T ∈ T and every transitive
subtournament T ′ of FTk , add a vertex xT,T ′ that is seen by every vertex of T ′ and that
sees every vertex of T . This completes the description of the digraph Gk+1.

By repeatedly applying Lemma 10.2.7 and Lemma 10.2.9, we can see that all of the
operations performed to construct Gk+1 preserve containment in C, and hence, since
Fk ∈ C, we also must have Gk+1 ∈ C.
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Let us now prove that −→χ (Gk+1) = k+ 1. A (k+ 1)-dicolouring can be achieved by
piecing together individual k-dicolourings of Fk and its copies FTk, T ∈ T, and assigning
to all vertices of the form xT,T ′ (which form a stable set in Gk+1) a distinct (k+ 1)-th
colour.

Finally, to prove that −→χ (Gk+1) > k, assume towards a contradiction that Gk+1

admits a dicolouring using colours from {1, . . . , k}. Then by Lemma 10.2.9, in this
dicolouring Fk contains a rainbow transitive tournament T of order k. Again by
Lemma 10.2.9, also FTk contains a rainbow transitive subtournament T ′ of order k. Now
consider the vertex xT,T ′ in G, and let i ∈ {1, . . . , k} denote its colour. Since both T and
T ′ contain all k colours, there exist vertices t1 ∈ V(T) and t2 ∈ V(T ′) which are both
assigned colour i. Finally, this yields a contradiction, since now the directed triangle
t1 → t2 → xT,T ′ → t1 in Gk+1 is monochromatic.

10.3 P E R S P E C T I V E S

After characterising heroes in oriented chordal graphs, it is natural to ask what are
the heroes in orientations of subclasses or superclasses of chordal graphs.

Concerning superclasses of chordal graphs, consider the following construction
(already mentioned in [10] and Chapter 5). Let G1 be the graph on 1 vertex, and
having defined Gk−1 inductively, define Gk = C⃗3(1,Gk−1, Gk−1, Gk−1). It is then
easy to see that −→χ (Gk) = k and that the underlying graph of Gk does not contain
an induced path of length 4. Hence, the underlying graphs of the Gk’s are perfect
graphs, and even co-graphs, which implies that C⃗3 is not a hero in orientations of
perfect graphs. So the only possible heroes are transitive tournaments, which are
trivial, since transitive tournaments are heroes in any orientations of graphs in C,
whenever C is a χ-bounded class of graphs.

Regarding subclasses of chordal graphs, orientations of interval graphs seem to be
an intriguing case. On one hand, we were not able to decide whether or not C⃗3(1, 2, 2)

or C⃗3 ⇒ K1 are heroes in this class, and our attempts have not led us to a strong
opinion as to the answer. On the other hand, we can prove the following. A unit
interval graph is an interval graph that admits an interval representation in which
every interval has unit length.
Theorem 10.3.1

Heroes in orientations of unit interval graphs are the same as heroes in tournaments.
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Proof : Since complete graphs are unit interval graphs, the set of heroes in orientations of
proper interval graphs is a subset of the set of heroes in tournaments.

We are going to prove the following, which easily implies that every hero in tourna-
ments is a hero in orientations of unit interval graphs.

(⋆) For every integer C, if G is an orientation of a unit interval graph in which every
subtournament has dichromatic number at most C, then G is 2C-dicolourable.

Let G be an orientation of a unit interval graph and C an integer such that every sub-
tournament of G has dichromatic number at most C. Consider an interval representation
of G where each interval has length 1 and assume without loss of generality that the end-
points of each interval are not integers. For every integer k, let Kk be the set of vertices
of G whose associated interval contains k. So each Kk induces a subtournament of G,
and by hypothesis, G[Kk] is C-dicolourable. Moreover, since each interval has length 1

and their extremities are not integers, the Kk’s partition the vertices of G and there is no
arc between Ki and Kj whenever |i− j| ⩾ 2. Hence, piecing together dicolourings of
G[Kk] with colours from {1, . . . , C} when k is odd, and from {C+ 1, . . . , 2C} when k is
even, results in a 2C-dicolouring of G.

We say that a digraph is t-local if the out-neighbourhood of each of its vertices
induces a digraph with dichromatic number at most t. A class of digraphs C has the
local to global property if, for every integer t, t-local digraphs in C have bounded
dichromatic numbers. It is proved in [49] that tournaments have the local to global
property, and this result was generalised to the class of digraphs with bounded inde-
pendence number in [48]. Since K1 ⇒ C⃗3 is not a hero in oriented chordal graphs, we
get that the class of oriented chordal graphs does not have the local to global property,
and that even 1-local oriented chordal graphs can have an arbitrarily large dichromatic
number. We wonder if other interesting classes of digraphs have it.





Part IV

E D G E - D E F E C T I V E C O L O U R I N G

In which we study an edge-colouring problem on multigraphs.
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V I Z I N G ’ S A N D S H A N N O N ’ S T H E O R E M S F O R D E F E C T I V E
E D G E C O L O U R I N G

This chapter is built upon a joint
work with Pierre Aboulker and

Chien-Chung Huang, published in [7].

In this chapter, we study a generalization of the edge-colouring problem on multi-
graphs, find a tight upper bound on the number of colours needed and discuss algo-
rithms in the case of simple graphs.

11.1 I N T RO D U C T I O N

As this chapter is mainly concerned with multigraphs, graphs will be called simple
graphs in this chapter. Let G be a multigraph. An edge colouring of G with defect
d is a colouring of its edges so that each vertex is incident with at most d edges
of the same colour. We say that G is k-edge colourable with defect d, or simply
(k, d)-edge colourable, if G admits an edge colouring with defect d using (at most) k
colours. In other words, the edge set can be partitioned into at most k submultigraphs
of maximum degree at most d. The d-defective chromatic index of G is the minimum
k such that G is (k, d)-edge colourable and is denoted by χ

′
d(G). So χ ′1(G) is the

usual chromatic index.
This notion is called frugal edge colouring in [13] and improper edge colouring

in [52]. We follow the vocabulary of the analogous concept of defective vertex colour-
ing, a now well-established notion. See [92] for a nice dynamic survey on defective
vertex colouring.

Our first result is the following.

171
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Theorem 11.1.1
Let d,∆ ⩾ 1 and let G a multigraph with maximum degree ∆. If d is even, then
χ ′d(G) = ⌈∆d ⌉, and if d is odd, then χ ′d(G) ⩽ ⌈3∆−1

3d−1 ⌉, and this bound is tight for
all ∆ and d.

The case d = 1 corresponds to the classic result of Shannon [83] on chromatic
index stating that for every multigraph G, χ ′1(G) ⩽ ⌊3∆(G)

2 ⌋ (observe that ⌈3∆−1
2 ⌉ =

⌊3∆2 ⌋ for all ∆). When d is even, the result is almost trivial in our context (see Theo-
rem 11.3.1), and was already known in the more general context of list colouring [13,
52]. When d is odd, a proof that χ ′d(G) ⩽ ⌈ 3∆

3d−1⌉ in the context of list colouring is an-
nounced in [13], but seems to contain a flaw and actually holds only in the case where
∆ is divisible by 3k− 1. See Section 11.5 for more on the list colouring context.

Vizing’s celebrated theorem on edge colouring [90] states that for every simple
graph G, χ ′1(G) ∈ {∆(G), ∆(G) + 1}, and Holyer [54], and Leven and Galil [62]
proved that deciding if χ ′1(G) = ∆(G) is NP-complete even restricted to d-regular
simple graphs as soon as d ⩾ 3. We generalize both results by proving that for every
simple graph G, χ ′d(G) ∈ {⌈∆d ⌉, ⌈

∆+1
d ⌉} (which is easily implied by Vizing’s Theo-

rem) and we characterize the values of ∆ and d for which the problem is NP-complete.
More precisely, we prove that, for given ∆ and d, the problem of determining χ ′d(G)

for a ∆-regular simple graph is NP-complete if and only if d is odd and ∆ = kd for
some integer k ⩾ 3. See Theorems 11.4.4 and 11.4.6.

We give some definitions and preliminary results in Section 11.2. We prove the
generalization of Shannon’s Theorem in Section 11.3 and the proof of the general-
ization of Vizing’s Theorem in Section 11.4. Finally, in Section 11.5, we conjec-
ture a generalisation of Theorem 11.1.1 for list colouring and a generalisation of the
Goldberg-Seymour Conjecture.

11.2 P R E L I M I N A R I E S

The following gives a trivial lower bound on the d-defective chromatic index that
turns out to be tight whenever d is even (see Theorem 11.3.1).

Lemma 11.2.1. For every multigraph G, χ ′d(G) ⩾ ⌈∆(G)
d ⌉.

Proof : At least ⌈∆(G)
d ⌉ colours are needed to colour the edges incident to a vertex of

degree ∆(G).
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Lemma 11.2.2. Let k, d, ∆ be integers. If every (∆+ 1)-regular multigraph is (k, d)-
edge colourable, then every ∆-regular multigraph is also (k, d)-edge colourable.

Proof : Let G be a ∆-regular multigraph. Take two disjoint copies G ′ and G ′′ of G and add
an edge between each vertex v ∈ V(G ′) and its copy in G ′′. The obtained multigraph
H is (∆+ 1)-regular and contains G as a submultigraph, so χ ′d(G) ⩽ χ ′d(H) ⩽ k.

Factors in multigraphs

A k-factor of G is a k-regular spanning submultigraph of G. We sometimes con-
sider a k-factor F as its edge set E(F). We recall this theorem from Petersen [74], one
of the very first fundamental results in multigraph theory:
Theorem 11.2.3 ([74])

Let ∆ be an even integer. A ∆-regular multigraph admits a k-factor for every even
integer k ⩽ ∆.

An Euler tour of a multigraph G is a closed walk in G that traverses every edge of
G exactly once. It is a well-known fact that a multigraph admits an Euler tour if and
only if it is connected and all its vertices have even degrees. The next two lemmas
use this fact to prove the existence of factors. This idea was already used by Petersen
to prove his theorem.

Lemma 11.2.4. Let G be a connected 2k-regular multigraph with an even number of
edges. Then the edges of G can be partitioned into two k-factors.

Proof : We number the edges e1, e2, . . . , e2t of G along an Euler tour C and we let A =

{e1, e3, . . . , e2t−1} and B = {e2, e4, . . . , e2t}. Since consecutive edges of C are num-
bered with different parities and its first and last edges have distinct parities, A and B

are both k-regular.

Lemma 11.2.5. Let G be a connected 2k-regular multigraph with an odd number of
edges, and let e ∈ E(G). There exist two multigraphs GA = (V,A) and GB = (V,B)

such that E(G) = A∪B∪ {e}, ∆(GA) ⩽ k and ∆(GB) ⩽ k.

Proof : The proof is the same as for the previous Lemma, except that we do not assign the
last edge of the Euler tour, and we choose e to be this last edge.
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The next theorem roughly says that, in a ∆-regular multigraph, one can find a k-
factor as soon as k is even and is relatively small compared to ∆. It was first proved
in [58]. See also Theorem 3.10 (v) in [12]. The version stated here is a simplified
version of the original theorem.
Theorem 11.2.6 ([58])

Let ∆ be an odd integer and G a 2-edge connected ∆-regular multigraph. Let
e ∈ E(G). Let k be an even integer with k ⩽ 2∆

3 . Then G has a k-factor containing
e.

Shannon multigraphs

Given an integer k, the Shannon multigraph Sh(k) is the multigraph made of three
vertices connected by ⌊k2⌋, ⌊

k
2⌋ and ⌈k2⌉ edges respectively. See Figure 21. Observe

that
— ∆(Sh(k)) = k,
— when k is even, Sh(k) is k-regular and has 3k

2 edges and,
— when k is odd, Sh(k) has two vertices of degree k and one vertex of degree

k− 1 and has 3k−1
2 edges.

⌊k2⌋ ⌊k2⌋

⌈k2⌉

Figure 21 – The Shannon multigraph Sh(k)

Lemma 11.2.7. Let k, d ⩾ 1 with d odd. Then χ ′d(Sh(k)) = ⌈
3k−1
3d−1⌉.

Proof : Consider an ordering (ei)1⩽i⩽|E(Sh(k))| of the edges of Sh(k) such that for any
1 ⩽ i ⩽ |E(Sh(k))|− 2, ei, ei+1 and ei+2 form a triangle. Such an ordering can be
obtained by setting e1 to be any edge with both extremities of degree k and then setting,
for i = 2, . . . , |E(Sh(k))|− 1, ei+1 to be any unnumbered edge coming right after ei
in clockwise order. The following statement is easily proven using induction: For
every odd integer ℓ such that 1 ⩽ ℓ ⩽ 2|E(Sh(k)|−1

3 , every contiguous subsequence of
(ei)1⩽i⩽|E(Sh(k))| of length 3ℓ−1

2 induces a multigraph of maximum degree ℓ.
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Thus, colouring the first 3d−1
2 edges of (ei)1⩽i⩽|E(Sh(k))| in one colour, the following

3d−1
2 in a second colour and so on, yields a colouring with at most ⌈ |E(Sh(k))|3d−1

2

⌉ colours

such that each colour class induces a submultigraph with maximum degree at most d,
and each colour class except at most one has 3d−1

2 edges. Since every submultigraph
of Sh(k) with maximum degree d (recall that d is odd) has at most 3d−1

2 edges, this
colouring is an optimal d-defective edge colouring and thus:

χ ′d(Sh(k)) =
⌈ |E(Sh(k))|

3d−1
2

⌉
=

⌈ 3k
3d−1⌉ = ⌈

3k−1
3d−1⌉ if k is even,

⌈ 3k−1
3d−1⌉ if k is odd.

11.3 G E N E R A L I Z AT I O N O F S H A N N O N ’ S T H E O R E M

The goal of this section is to prove Theorem 11.1.1. In view of Lemma 11.2.1,
for even d, it suffices to prove the upper bound χ ′d(G) ⩽ ⌈∆d ⌉. Moreover, for both
even and odd d, it is enough to prove the result for ∆-regular multigraphs. Indeed,
if G is not ∆-regular, then we can build a ∆-regular multigraph G ′ containing G as
a submultigraph as follows: take two copies of G, and for each vertex v of G, add
∆− d(v) edges between the two copies of v. Then χ ′d(G) ⩽ χ ′d(G

′). So it suffices
to prove the following two results. The case where d is even was already known, but
we give the proof anyway for completeness.
Theorem 11.3.1 ([13, 52])

Let d,∆ ⩾ 1 with d even. For every ∆-regular multigraph G, χ
′
d(G) = ⌈∆d ⌉.

Proof : If ∆ is even, then G has a min{d,∆}-factor by Theorem 11.2.3, and it follows
inductively that χ ′d(G) ⩽ ⌈∆(G)

d ⌉. If ∆ is odd, then ∆+ 1 is even and (by the previ-
ous sentence) every (∆+ 1)-regular multigraph is (k, d)-edge colourable, where k =

⌈∆+1
d ⌉ = ⌈

∆
d ⌉; hence χ ′d(G) ⩽ ⌈∆d ⌉ by Lemma 11.2.2. Equality holds in both cases by

Lemma 11.2.1.

Theorem 11.3.2

Let d,∆ ⩾ 1 with d odd. For every ∆-regular multigraph G, χ ′d(G) ⩽ ⌈3∆−1
3d−1 ⌉.

Proof : If d = 1, then the result follows from the classic result of Shannon, and so we may
assume that d ⩾ 3. By Lemma 11.2.2, it is enough to prove it for values of ∆ such that
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⌈3∆−1
3d−1 ⌉ < ⌈

3(∆+1)−1
3d−1 ⌉, that is, for ∆ ∈ {(i+ 1)d− ⌈ i3⌉ | i ⩾ 0} = {d, 2d− 1, 3d−

1, 4d − 1, 5d − 1, 6d − 2, . . . }. We call such integers special. In particular, we have
∆ ⩾ d ⩾ 3.

Let G be a counterexample that minimizes ∆ and has minimum order. That is, ∆ is
special, G is ∆-regular, χ ′d(G) = ⌈3∆−1

3d−1 ⌉+ 1, every ∆-regular multigraph with fewer
vertices than G is (⌈3∆−1

3d−1 ⌉, d)-edge colourable, and for every special integer ∆ ′ < ∆,
every ∆ ′-regular multigraph is (⌈3∆ ′−1

3d−1 ⌉, d)-edge colourable.

Claim 11.3.2.1. If G has a cut edge e, then at least one connected component of G− e

is isomorphic to Sh(∆).

Proof of Claim : Set e = ab and let A and B be the two connected components of
G− e containing a and b respectively. Assume for contradiction that neither A nor B is
isomorphic to Sh(∆). Vertices of A have degree ∆ in A except for a, which has degree
∆− 1; hence, ∆ is odd. If |V(A)| = 1, then a has degree 1, a contradiction with the fact
that ∆ ⩾ 3. If |V(A)| = 3, then A is isomorphic to Sh(∆), a contradiction. We can thus
assume |V(A)| ⩾ 5.

Let GA be the multigraph obtained from G by replacing A by Sh(∆) as in Figure 22.
GA is ∆-regular (because ∆ is odd) and has strictly fewer vertices than G. Hence, by
minimality of G, GA admits an edge colouring cA with defect d using at most ⌈3∆−1

3d−1 ⌉
colours. We define symmetrically GB and cB. We may assume, by properly permuting
colours in GB, that cB(e) = cA(e). We can now obtain an edge colouring of G with
defect d using at most ⌈3∆−1

3d−1 ⌉ colours by assigning colour cA(e) to e, colour cA(e ′) to
any edge e ′ in B, and colour cB(e ′) to any edge e ′ in A, a contradiction. □

a
⌊∆2 ⌋

⌊∆2 ⌋

⌈∆2 ⌉ B
b

e

Figure 22 – the multigraph GA

Observe that, if a ∆-regular multigraph has a cut edge, then ∆ must be odd. Moreover,
if ∆ is odd, then for every (3∆−1

3d−1 , d) edge colouring of Sh(∆), there is a colour c such
that the (unique) vertex of Sh(∆) with degree ∆− 1 is incident with at most d− 1 edges
coloured with c. This simple observation is used in the proof of the following claim.

Claim 11.3.2.2. G has at most one cut edge.
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Proof of Claim : Suppose for contradiction that G has two cut edges uv and u ′v ′. By
Claim 11.3.2.1, we may assume that G is made of two disjoint copies of Sh(∆) plus a
multigraph A as in Figure 23. Note that u = u ′ is possible.

Assume first that u ̸= u ′. Then A+ uu ′ is ∆-regular and has strictly fewer vertices
than G. So, by minimality of G, A + uu ′ admits a (⌈3∆−1

3d−1 ⌉, d)-edge colouring cA.
We can extend this colouring to G by giving colour cA(uu ′) to uv and u ′v ′ and then
extending this colouring to the two copies of Sh(∆) without any new colour (this is
possible by the observation stated right before the claim). This leads to a (⌈3∆−1

3d−1 ⌉, d)-
edge colouring of G, a contradiction.

v
⌊∆2 ⌋

⌊∆2 ⌋

⌈∆2 ⌉ A
u v ′⌊∆2 ⌋

⌊∆2 ⌋

⌈∆2 ⌉
u ′

Figure 23 – the multigraph G when u ̸= u ′

Assume now that u = u ′. We consider the multigraph G ′ obtained by replacing the
two copies of Sh(∆) with four new vertices w, x, y, z as in Figure 24. It is easy to
check that G ′ is ∆-regular and since G ′ has two vertices less then G, it is (⌈3∆−1

3d−1 ⌉, d)-
edge colourable. This gives us a (⌈3∆−1

3d−1 ⌉, d)-edge colouring of A that can easily be
extended to the two copies of Sh(∆) without any new colour (this is again possible by
the observation stated right before the claim), leading to a (⌈3∆−1

3d−1 ⌉, d)-edge colouring
of G, a contradiction. □

v

⌊∆2 ⌋

⌊∆2 ⌋
⌈∆2 ⌉

A
u

v ′⌊∆2 ⌋

⌊∆2 ⌋
⌈∆2 ⌉

u
A

w

x

y

z

⌊∆2 ⌋-1

⌊∆2 ⌋-1

⌊∆2 ⌋

⌊∆2 ⌋

Figure 24 – On the left: the multigraph G when u = u ′, on the right: the multigraph G ′.

Claim 11.3.2.3. G has a k-factor for every even integer k ⩽ 2∆
3 .
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Proof of Claim : Let k ⩽ 2∆
3 be an even integer. If ∆ is even, the result holds by

Theorem 11.2.3. So we may assume that ∆ is odd. If G is 2-edge connected, then we
are done by Theorem 11.2.6. So assume G has a cut edge uv. Let A,B be the two
connected components of G \ uv with u ∈ V(A) and v ∈ V(B). By Claim 11.3.2.2, G
has no other cut edges and thus A and B are both 2-edge-connected. By Claim 11.3.2.1,
either A or B is isomorphic to Sh(∆). Without loss of generality, we suppose that it is
B. Let w and x be the two other vertices of B. Let y be a neighbour of u in A. Consider
G ′ = G+uv+ yw−uy− vw (see Figure 25). It is easy to check that G ′ is ∆-regular
and 2-edge-connected (recall that ∆ ⩾ 3 and thus ⌊∆2 ⌋ ⩾ 1). Applying Theorem 11.2.6
on G ′ with e = wy, G ′ has a k-factor F containing the edge wy. There exists an integer
s ⩽ k− 1 such that F contains s edges wx, and k− s− 1 edges wv. So F must contain
k− s edges vx and thus F contains exactly one edge uv. Hence, F−uv−yw+uy+vw

is a k-factor of G. □

v

x

w

⌊∆2 ⌋

⌊∆2 ⌋

⌈∆2 ⌉A
uy v

x

w

⌊∆2 ⌋

⌊∆2 ⌋−1

⌈∆2 ⌉A
uy

Figure 25 – The multigraphs G and G ′

We are now ready to prove the theorem. We distinguish cases with respect to the
value of ∆ and the corresponding value of ⌈3∆−1

3d−1 ⌉. Recall that ∆ is a special integer,
that is ∆ ∈ {(i+ 1)d− ⌈ i3⌉ | i ⩾ 0} = {d, 2d− 1, 3d− 1, 4d− 1, 5d− 2, 6d− 2, . . . }.

Case 1: ⌈3∆−1
3d−1 ⌉ = 1, ∆ = d. The result holds trivially.

Case 2: ⌈3∆−1
3d−1 ⌉ = 2, ∆ = 2d− 1. Since d is odd, d− 1 is even, and d− 1 < 4d−2

3 =
2∆
3 . So, by Claim 11.3.2.3, G has a (d− 1)-factor, say F. Now, G− F is d-regular, and

thus χ ′d(G) ⩽ 2. This proves case 2.

Case 3: ⌈3∆−1
3d−1 ⌉ = 3, ∆ = 3d− 1. Since d is odd, ∆ is even. By Theorem 11.2.3,

G has a 2d-factor F. By applying Lemma 11.2.4 on connected components of even
size of F and Lemma 11.2.5 on connected components of odd size, we can extract two
multigraphs GA and GB along with a matching M such that E(F) = E(GA)∪ E(GB)∪
M, ∆(GA) ⩽ d and ∆(GB) ⩽ d. Now, E(G) can be partitioned into E(GA), E(GB)

and E(G) \ (E(F) \M). Since the multigraph induced by E(G) \ (E(F) \M) has a
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maximum degree at most 3d− 1− 2d+ 1 = d, each of these sets induces a multigraph
with maximum degree at most d. This proves case 3.

Case 4: ⌈3∆−1
3d−1 ⌉ = 4, ∆ = 4d− 1. Since d ⩾ 3, we have 2d < 8d−2

3 = 2∆
3 . So, by

Claim 11.3.2.3, G has a 2d-factor, say A, and B = G−A is a (2d− 1)-factor of G. By
applying Lemma 11.2.4 on connected components of A of even size and Lemma 11.2.5
on connected components of A of odd size, we get a partition of E(A) into three sets
A1, A2 and M such that ∆(A1) ⩽ d, ∆(A2) ⩽ d and M is a matching.

It is now enough to prove that χ ′d(B ∪M) ⩽ 2. Let C be a connected component of
B∪M. If every vertex of C is incident with an edge of M, then C has an even number
of vertices and is 2d-regular, so its number of edges is d times its number of vertices,
which is even, and thus χ ′d(C) = 2 by Lemma 11.2.4. Assume now that there exists
a vertex of C that is not incident with an edge of M. Take two copies of C, and add
an edge between the copies of each vertex of C not incident with an edge of M. The
obtained multigraph has an even number of vertices and is 2d-regular, so it is (2, d)-
edge colourable by Lemma 11.2.4 and thus so is C. So each connected component of
B∪M is (2, d)-edge colourable, and thus so is B∪M. This proves case 4.

Case 5: ⌈3∆−1
3d−1 ⌉ ⩾ 5, ∆ ⩾ 5d− 2. Note that 3d− 1 is even since d is odd. Also,

since d ⩾ 3, 3d− 1 = 9d−3
3 < 10d−4

3 ⩽ 2∆
3 . So, by Claim 11.3.2.3, G has a (3d− 1)-

factor, say F. By Case 3, F is (3, d)-edge colourable. As G− F is (∆−(3d− 1))-regular,
and as ∆− (3d− 1) is less than at least one special integer less than ∆, it follows from
minimality of ∆ that

χ ′d(G− F) ⩽ ⌈3(∆− (3d− 1)) − 1

3d− 1
⌉,

and thus

χ ′d(G) ⩽ 3+ ⌈3(∆− (3d− 1)) − 1

3d− 1
⌉ = ⌈3∆− 9d+ 3− 1+ 9d− 3

3d− 1
⌉ = ⌈3∆− 1

3d− 1
⌉.

This proves case 5 and the theorem.
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In this section, we will only consider simple graphs. Vizing [90] proved the follow-
ing theorem:
Theorem 11.4.1 (Vizing’s Theorem, [90])

For every simple graph G with maximum degree ∆, χ ′1(G) ∈ {∆,∆+ 1}.
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While there are only 2 possibilities, deciding between them was proven to be NP-
complete even for regular simple graphs.
Theorem 11.4.2 ( Holyer [54], Leven and Galil [62])

For every ∆ ⩾ 3, it is NP-complete to decide if a ∆-regular simple graph G is
∆-edge colourable.

Vizing’s theorem easily implies its following generalization to d-defective edge
colouring.
Corollary 11.4.3

For every d ⩾ 1 and every simple graph G with maximum degree ∆, χ ′d(G) ∈
{⌈∆d ⌉, ⌈

∆+1
d ⌉}.

Proof : The lower bound holds by Lemma 11.2.1. For the upper bound, consider an
edge colouring of G with ∆(G) + 1 colours (it exists by Vizing’s Theorem) and let
M1, . . . ,M∆(G)+1 be the classes of colours. By assigning colour 1 to M1 ∪ · · · ∪Md,
colour 2 to Md+1 ∪ · · · ∪M2d, etc, we obtain a (⌈∆+1

d ⌉, d) edge colouring of G.

We point out that Vizing [90] also proved that for every (not necessarily simple)
multigraph G with maximum degree ∆ and edge multiplicity µ, χ ′1(G) ⩽ ∆ + µ

where the edge multiplicity is the maximum number of edges between two vertices.
This directly implies that χ ′d(G) ⩽ ⌈∆+µ

d ⌉.

In the following cases, one can distinguish between the two possibilities in Corol-
lary 11.4.3.
Theorem 11.4.4

Let d,∆ ⩾ 1 and let G be a simple graph with maximum degree ∆. Then:
(a) χ ′d(G) = ⌈∆d ⌉ if (i) d does not divide ∆, or (ii) d is even, or (iii) ∆ = d.
(b) If d is odd and ∆ = 2d, then χ ′d(G) = ⌈∆d ⌉ = 2 if and only if every 2d-

regular connected component of G has an even number of vertices; otherwise
χ ′d(G) = ⌈∆+1

d ⌉ = 3.

Proof : In (a), (i) follows from Corollary 11.4.3, since if d does not divide ∆, then
⌈∆d ⌉ = ⌈

∆+1
d ⌉, (ii) is contained in Theorem 11.1.1 (even if G is not simple), and (iii)

is obvious.
To prove (b), note first that a 2d-regular component C of G with n vertices has dn

edges, and d is odd; so the order and size of C are either both even or both odd.
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Suppose first that every 2d-regular component has an even order and an even size.
Take two disjoint copies of G and, for each vertex v of G, add 2d−d(v) edges between
the two copies of v. The resulting (not necessarily simple) multigraph G ′ is 2d-regular,
and each of its connected components has even order and size (as the components of G
of odd order were not 2d-regular, they are included in components of even order in G ′).
Now, by Lemma 11.2.2, χ ′d(G) ⩽ χ ′d(G

′) = 2, and so χ ′d(G) = 2.
Assume now that G has a 2d-regular component C of odd order and size. Since d

is odd, C does not admit a d-factor, and so C cannot be (2, d)-edge coloured. So, by
Corollary 11.4.3, χ ′d(G) = ⌈2d+1

d ⌉ = 3.

We now prove a generalization of Theorem 11.4.2 in the context of defective edge
colouring. Before that, we need the following construction.

For all integers k, d ⩾ 1, we construct a simple graph Gkd,d such that G is kd-
regular and χ ′d(G) = k. We can set Gd,d = Kd+1. Inductively, having defined Gkd,d,
let G(k+1)d,d be the simple graph obtained by taking two disjoint copies of Gkd,d and
adding the edges of any d-regular bipartite simple graph between these two copies 1.
The obtained simple graph is clearly (k+ 1)d-regular, and we can (k+ 1, d)-edge
colour it by taking a (k, d)-edge colouring for the two copies of Gkd,d and add a
new colour for the added edges, and finally by Lemma 11.2.1 it does not admit a
(k, d)-edge colouring. Hence χ ′d(G(k+1)d,d) = k+ 1.

Now assume d is odd and let H be obtained from Gkd,d by subdividing one edge
ab with a new vertex v of degree 2.

Lemma 11.4.5. H has a (k, d)-edge colouring, and in every such colouring the edges
av and bv have the same colour.

Proof : Let |V(Gkd,d)| = n. Let us first prove that n is even. Since Gkd,d is kd-regular, in
a (k, d)-edge colouring of Gkd,d, each vertex must be incident with exactly d edges of
each colour. So every colour occurs on exactly dn

2 edges. Hence, dn
2 is an integer, and

since d is odd, n is even.
Clearly H is (k, d)-edge colourable since Gkd,d is. Every vertex of H except v has de-

gree kd, so in a (k, d)-edge colouring of H, every vertex is incident with exactly d edges
of each colour. Assume for contradiction that v is incident with edges of two different
colours, and let c be one of these colours. In H \ {v}, c occurs on d(n−1)+(d−1)

2 = dn−1
2

1. For example, naming u1, . . . , un and v1, . . . , vn the vertices of the two copies of Gkd,d, add
the edges uivi, uivi+1, . . . , uivi+d for i = 1, . . . , n, subscripts being taken modulo n. It gives a
d-regular bipartite simple graph as soon as n ⩾ d.



182 V I Z I N G ’ S A N D S H A N N O N ’ S T H E O R E M S F O R D E F E C T I V E E D G E C O L O U R I N G

edges, and thus on dn+1
2 edges of H. But since n is even, dn+1

2 is not an integer, a
contradiction. Thus av and bv must have the same colour.

In the proof of the following theorem, we will use many copies of H, all with the
same values of k and d. We will use subscripts consistently: if Hu,i is a copy of H,
then it will contain a vertex vu,i of degree 2 with neighbours au,i and bu,i.

Note that the pairs d,∆ in the following theorem are precisely those that are not
covered by Theorem 11.4.4.
Theorem 11.4.6

Let d be an odd integer and ∆ = kd for some integer k ⩾ 3. Then it is NP-
complete to decide if a ∆-regular simple graph is (k, d)-edge colourable.

Proof : The problem is clearly in NP. The case d = 1 is Theorem 11.4.2, and so we may
assume that d ⩾ 3. We perform a reduction from the case d = 1. Let G be a k-regular
simple graph.

We construct a simple graph G ′ containing G as follows: starting with G, for each
vertex u of G add k(d−1)

2 disjoint copies Hu,i of H for i = 1, 2, . . . ,
k(d−1)

2 and identify
each vertex vu,i with u. The graph G ′ is clearly simple and kd-regular. We will prove
that χ ′1(G) = k if and only if χ ′d(G

′) = k, and this will prove the theorem.
Suppose first that χ ′1(G) = k. Starting with a (k, 1)-edge colouring of G, we extend

it to G ′ as follows: for each vertex u ∈ V(G) and colour c ∈ {1, 2, . . . , k}, give colour
c to all edges vau,i and vbu,i with (c−1)(d−1)

2 + 1 ⩽ i ⩽ c(d−1)
2 , and extend this to a

(k, d)-edge colouring of Hu,i, which is possible by Lemma 11.4.5. Now, for each colour
c ∈ {1, 2, . . . , k}, u is incident to d edges coloured c: d − 1 edges in E(G ′) \ E(G)

and one edge of G. So we have constructed a (k, d)-edge colouring of G ′. Hence
χ ′d(G

′) = k.
Suppose now that χ ′d(G

′) = k, and fix a (k, d)-edge colouring of G ′. By
Lemma 11.4.5, for each vertex u ∈ V(G) and colour c ∈ {1, 2, . . . , k}, u is incident to
an even number of edges in E(G ′) \ E(G) with colour c, and so (since d is odd) u must
be incident to an odd number of edges of G with colour c. Since there are k colours
and G is k-regular, u must be adjacent to exactly one edge of each colour, and so the
(k, d)-edge colouring of G ′ contains a (k, 1)-edge colouring of G. Hence χ1(G) = k.
This completes the proof.
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11.5 P E R S P E C T I V E S

Recall that multigraphs are allowed to have multiple edges.

List colouring

The d-defective list chromatic index of a multigraph G, denoted by ch ′d(G), is
defined as the minimum k such that, for any choice of a list of k integers given to
each edge, there is an edge colouring with defect d such that each edge receives a
colour from its list. So ch ′1(G) is the usual list chromatic index.

Borodin et al. [28] proved that Shannon bound holds for the list chromatic index,
that is, for every multigraph G, ch ′1(G) ⩽ ⌈3∆(G)

2 ⌉. It is then natural to ask if Theo-
rem 11.1.1 extends to defective list edge colouring. As mention in the introduction,
when d is even, it is proved in [52] (and a simpler proof is given in [13]) that for every
multigraph G, ch ′d(G) = ⌈∆(G)

d ⌉. When d is odd, a proof that ch ′d(G) ⩽ ⌈ 3∆
3d−1⌉ is

announced in [13] but seems to have a flaw and actually holds only in the case where
∆ is divisible by 3k− 1.
Conjecture 11.5.1

For every odd integer d and for every multigraph G, ch ′d(G) ⩽ ⌈3∆−1
3d−1 ⌉

We finally mention the following stronger conjecture that corresponds to the in-
famous list edge colouring conjecture for d = 1 and is proved for bipartite graph
in [52].
Conjecture 11.5.2 ([51])

For every multigraph G and every integer d, ch ′d(G) = χ ′d(G).

The Goldberg-Seymour Conjecture

Let d ⩾ 1 and G a multigraph. Observe that in any edge colouring of G with
defect d, and for any X ⊆ V(G), each colour class contains at most ⌊d|X|2 ⌋ edges,
which leads to the following lower bound on the d-defective edge chromatic number
of any multigraph G:
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χ ′d(G) ⩽ Γd(G) = max
{⌈ |E(G[X])|

⌊d|X|2 ⌋

⌉
| X ⊆ V(G), |X| ⩾ 2

}
.

The following was known as the Goldberg-Seymour Conjecture [44, 82] for almost
50 years. Recently, Chen, Jing and Zang [31] announced a proof (the paper is still
under revision).
Theorem 11.5.3 (Golberg-Seymour [44, 82])

For every multigraph G,
χ ′1(G) ⩽ max{Γ1(G), ∆(G) + 1}.

We think that the following generalization could hold.
Conjecture 11.5.4

Every multigraph G satisfies χ ′d(G) ⩽ max{Γd(G), ⌈∆(G)+1
d ⌉}.

An easy proof of the conjecture could start as follows. Let G be a counter-example
to Conjecture 11.5.4, that is χ ′d(G) > max{Γd(G), ⌈∆(G)+1

d ⌉} for some d ⩾ 3. By

Theorem 11.5.3, χ ′1(G) ⩽ max{Γ1(G), ∆(G) + 1}. As χ ′d(G) ⩽ ⌈χ
′
1(G)
d ⌉, if χ ′1(G) ⩽

∆(G) + 1, then χ ′d(G) ⩽ ∆(G)+1
d , a contradiction. So may assume that ∆(G) + 1 <

χ ′1(G) = Γ1(G). This implies that χ ′d(G) ⩽ ⌈Γ1(G)
d ⌉. So it is enough to prove that

⌈Γ1(G)
d ⌉ ⩽ max{Γd(G), ⌈∆(G)+1

d ⌉}.
Unfortunately, this last inequality does not hold, for example in the following sim-

ple example. Consider the multigraph G made of three vertices connected by respec-
tively 7, 7 and 2 edges. So ∆(G) + 1 = 15, Γ1(G) = max{21 ,

7
1 ,

16
1 } = 16 and

χ ′1(G) = 16. Moreover, Γ3(G) = max{23 ,
7
3 ,

16
4 } = 4. Hence,

6 =
⌈Γ1(G)

3

⌉
> max

{
Γ3(G),

⌈∆(G) + 1

3

⌉}
= max

{
4,
⌈15
3

⌉}
= 5.

The degree Ramsey number of stars

In this subsection, we briefly describe the link between the degree Ramsey number
of stars and defective edge colouring. We are thankful to Ross Kang for bringing this
to our attention.
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Let H, G be simple graphs. Let H →s G mean that every colouring of E(H) with
s colours produces a monochromatic copy of H. The degree Ramsey number of a
simple graph G is R∆(G; s) = min{∆(H) : H →s G}. Observe that H →s K1,d+1

means that χ ′d(H) ⩾ s+ 1. Hence, R∆(K1,d+1; s) = min{∆(H) : χ ′d(H) ⩾ s+ 1}.
It can be proved (with a little brain gymnastic) that the following result of Kinner-

sley, Milans and West is equivalent to corollary 11.4.3.
Theorem 11.5.5 ([59])

If s ⩾ 2, then R∆(K1,d+1; s) =

{
s · d if d is odd,
s · d+ 1 if d is even.

It could be of interest to look at the degree Ramsey number of multigraphs.
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